Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894182

RESUMO

Wearable sensors are rapidly gaining influence in the diagnostics, monitoring, and treatment of disease, thereby improving patient outcomes. In this review, we aim to explore how these advances can be applied to magnetic resonance imaging (MRI). We begin by (i) introducing limitations in current flexible/stretchable RF coils and then move to the broader field of flexible sensor technology to identify translatable technologies. To this goal, we discuss (ii) emerging materials currently used for sensor substrates, (iii) stretchable conductive materials, (iv) pairing and matching of conductors with substrates, and (v) implementation of lumped elements such as capacitors. Applicable (vi) fabrication methods are presented, and the review concludes with a brief commentary on (vii) the implementation of the discussed sensor technologies in MRI coil applications. The main takeaway of our research is that a large body of work has led to exciting new sensor innovations allowing for stretchable wearables, but further exploration of materials and manufacturing techniques remains necessary, especially when applied to MRI diagnostics.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Dispositivos Eletrônicos Vestíveis , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Humanos , Desenho de Equipamento , Condutividade Elétrica
2.
Instrum Sci Technol ; 52(4): 433-455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100769

RESUMO

The concept of a 2D cylindrical High Pass Ladder (2D c-HPL) is used in the development of this ultra high radio frequency (UHRF) volumetric head coil for 7T tuned at the Larmor frequency of 298 MHz. The architecture of the 2D c-HPL helps to overcome the challenges associated with non-uniform magnetic field distribution. The prototype consists of an individual resonating array of inductance-capacitance (LC) elements and each component is tuned to the precise f o frequency. The tuning of the (i) inductance, (ii) capacitance, (iii) mesh size, and (iv) coupling coefficient play critical roles to attain the desired Larmor frequency. For this proof-of-concept, the prototype of a volumetric head coil consists of a cylindrical array size of 4 ×6, with individual LC components of inductance magnitude, 98 nH and four fixed value capacitors and one tunable capacitor that allowed to achieve the desired precession frequency, f r = 298 M H z . The model was tested for three different f o values of 269 MHz, 275 MHz and 286 MHz. The mutual coupling and the eigenfrequencies were compared through bench testing and dispersion equation. The experimental data were in good agreement (< 5%) with the theoretical eigenfrequencies from the dispersion relation. The theoretical eigenfrequencies and the experimental eigenfrequencies are in good agreement for eigenmodes (1,2), (1,3), (2,2), (2,3) and (4,3).

3.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688046

RESUMO

Flexible and stretchable radiofrequency coils for magnetic resonance imaging represent an emerging and rapidly growing field. The main advantage of such coil designs is their conformal nature, enabling a closer anatomical fit, patient comfort, and freedom of movement. Previously, we demonstrated a proof-of-concept single element stretchable coil design with a self-tuning smart geometry. In this work, we evaluate the feasibility of scaling this coil concept to a multi-element coil array and the associated engineering and manufacturing challenges. To this goal, we study a dual-channel coil array using full-wave simulations, bench testing, in vitro, and in vivo imaging in a 3 T scanner. We use three fabrication techniques to manufacture dual-channel receive coil arrays: (1) single-layer casting, (2) double-layer casting, and (3) direct-ink-writing. All fabricated arrays perform equally well on the bench and produce similar sensitivity maps. The direct-ink-writing method is found to be the most advantageous fabrication technique for fabrication speed, accuracy, repeatability, and total coil array thickness (0.6 mm). Bench tests show excellent frequency stability of 128 ± 0.6 MHz (0% to 30% stretch). Compared to a commercial knee coil array, the stretchable coil array is more conformal to anatomy and provides 50% improved signal-to-noise ratio in the region of interest.


Assuntos
Comércio , Engenharia , Humanos , Articulação do Joelho , Metais , Movimento
4.
NMR Biomed ; 35(12): e4802, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35834176

RESUMO

Lack of a body-sized, bore-mounted, radiofrequency (RF) body coil for ultrahigh field (UHF) magnetic resonance imaging (MRI) is one of the major drawbacks of UHF, hampering the clinical potential of the technology. Transmit field (B1 ) nonuniformity and low specific absorption rate (SAR) efficiencies in UHF MRI are two challenges to be overcome. To address these problems, and ultimately provide a pathway for the full clinical potential of the modality, we have designed and simulated two-dimensional cylindrical high-pass ladder (2D c-HPL) architectures for clinical bore-size dimensions, and demonstrated a simplified proof of concept with a head-sized prototype at 7 T. A new dispersion relation has been derived and electromagnetic simulations were used to verify coil modes. The coefficient of variation (CV) for brain, cerebellum, heart, and prostate tissues after B1 + shimming in silico is reported and compared with previous works. Three prototypes were designed in simulation: a head-sized, body-sized, and long body-sized coil. The head-sized coil showed a CV of 12.3%, a B1 + efficiency of 1.33 µT/√W, and a SAR efficiency of 2.14 µT/√(W/kg) for brain simulations. The body-sized 2D c-HPL coil was compared with same-sized transverse electromagnetic (TEM) and birdcage coils in silico with a four-port circularly polarized mode excitation. Improved B1 + uniformity (26.9%) and SAR efficiency (16% and 50% better than birdcage and TEM coils, respectively) in spherical phantoms was observed. We achieved a CV of 12.3%, 4.9%, 16.7%, and 2.8% for the brain, cerebellum, heart, and prostate, respectively. Preliminary imaging results for the head-sized coil show good agreement between simulation and experiment. Extending the 1D birdcage coil concept to 2D c-HPLs provides improved B1 + uniformity and SAR efficiency.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Cabeça , Encéfalo/diagnóstico por imagem
5.
Radiology ; 291(1): 180-185, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30806599

RESUMO

Background Screen-printed MRI coil technology may reduce the need for bulky and heavy housing of coil electronics and may provide a better fit to patient anatomy to improve coil performance. Purpose To assess the performance and caregiver and clinician acceptance of a pediatric-sized screen-printed flexible MRI coil array as compared with conventional coil technology. Materials and Methods A pediatric-sized 12-channel coil array was designed by using a screen-printing process. Element coupling and phantom signal-to-noise ratio (SNR) were assessed. Subjects were scanned by using the pediatric printed array between September and November 2017; results were compared with three age- and sex-matched historical control subjects by using a commercial 32-channel cardiac array at 3 T. Caregiver acceptance was assessed by asking nurses, technologists, anesthesiologists, and subjects or parents to rate their coil preference. Diagnostic quality of the images was evaluated by using a Likert scale (5 = high image quality, 1 = nondiagnostic). Image SNR was evaluated and compared. Results Twenty study participants were evaluated with the screen-printed coil (age range, 2 days to 12 years; 11 male and nine female subjects). Loaded pediatric phantom testing yielded similar noise covariance matrices and only slightly degraded SNR for the printed coil as compared with the commercial coil. The caregiver acceptance survey yielded a mean score of 4.1 ± 0.6 (scale: 1, preferred the commercial coil; 5, preferred the printed coil). Diagnostic quality score was 4.5 ± 0.6. Mean image SNR was 54 ± 49 (paraspinal muscle), 78 ± 51 (abdominal wall muscle), and 59 ± 35 (psoas) for the printed coil, as compared with 64 ± 55, 65 ± 48, and 57 ± 43, respectively, for the commercial coil; these SNR differences were not statistically significant (P = .26). Conclusion A flexible screen-printed pediatric MRI receive coil yields adequate signal-to-noise ratio in phantoms and pediatric study participants, with similar image quality but higher preference by subjects and their caregivers when compared with a conventional MRI coil. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Lamb in this issue.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Impressão/métodos , Criança , Pré-Escolar , Desenho de Equipamento , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética/normas , Masculino , Imagens de Fantasmas , Controle de Qualidade , Razão Sinal-Ruído
6.
Materials (Basel) ; 17(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38998405

RESUMO

Recent developments in the field of radiofrequency (RF) coils for magnetic resonance imaging (MRI) offer flexible and patient-friendly solutions. Previously, we demonstrated a proof-of-concept single-element stretchable coil design based on liquid metal and a self-tuning smart geometry. In this work, we numerically analyze and experimentally study a multi-channel stretchable coil array and demonstrate its application in dynamic knee imaging. We also compare our flexible coil array to a commonly used commercial rigid coil array. Our numerical analysis shows that the proposed coil array maintains its resonance frequency (<1% variation) and sensitivity (<6%) at various stretching configurations from 0% to 30%. We experimentally demonstrate that the signal-to-noise ratio (SNR) of the acquired MRI images is improved by up to four times with the stretchable coil array due to its conformal and therefore tight-fitting nature. This stretchable array allows for dynamic knee imaging at different flexion angles, infeasible with traditional, rigid coil arrays. These findings are significant as they address the limitations of current rigid coil technology, offering a solution that enhances patient comfort and image quality, particularly in applications requiring dynamic imaging.

7.
Med Phys ; 50(6): 3498-3510, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36737839

RESUMO

BACKGROUND: The development of materials with tailored signal intensity in MR imaging is critically important both for the reduction of signal from non-tissue hardware, as well as for the construction of tissue-mimicking phantoms. Silicone-based phantoms are becoming more popular due to their structural stability, stretchability, longer shelf life, and ease of handling, as well as for their application in dynamic imaging of physiology in motion. Moreover, silicone can be also used for the design of stretchable receive radio-frequency (RF) coils. PURPOSE: Fabrication of materials with tailored signal intensity for MRI requires knowledge of precise T1 and T2 relaxation times of the materials used. In order to increase the range of possible relaxation times, silicone materials can be doped with gadolinium (Gd). In this work, we aim to systematically evaluate relaxation properties of Gd-doped silicone material at a broad range of Gd concentrations and at three clinically relevant magnetic field strengths (1.5 T, 3 T, and 7 T). We apply the findings for rendering silicone substrates of stretchable receive RF coils less visible in MRI. Moreover, we demonstrate early stage proof-of-concept applicability in tissue-mimicking phantom development. MATERIALS AND METHODS: Ten samples of pure and Gd-doped Ecoflex silicone polymer samples were prepared with various Gd volume ratios ranging from 1:5000 to 1:10, and studied using 1.5 T and 3 T clinical and 7 T preclinical scanners. T1 and T2 relaxation times of each sample were derived by fitting the data to Bloch signal intensity equations. A receive coil made from Gd-doped Ecoflex silicone polymer was fabricated and evaluated in vitro at 3 T. RESULTS: With the addition of a Gd-based contrast agent, it is possible to significantly change T2 relaxation times of Ecoflex silicone polymer (from 213 ms to 20 ms at 1.5 T; from 135 ms to 17 ms at 3 T; and from 111.4 ms to 17.2 ms at 7 T). T1 relaxation time is less affected by the introduction of the contrast agent (changes from 608 ms to 579 ms; from 802.5 ms to 713 ms at 3 T; from 1276 ms to 979 ms at 7 T). First results also indicate that liver, pancreas, and white matter tissues can potentially be closely mimicked using this phantom preparation technique. Gd-doping reduces the appearance of the silicone-based coil substrate during the MR scan by up to 81%. CONCLUSIONS: Gd-based contrast agents can be effectively used to create Ecoflex silicone polymer-based phantoms with tailored T2 relaxation properties. The relative low cost, ease of preparation, stretchability, mechanical stability, and long shelf life of Ecoflex silicone polymer all make it a good candidate for "MR invisible" coil development and bears promise for tissue-mimicking phantom development applicability.


Assuntos
Meios de Contraste , Silicones , Imageamento por Ressonância Magnética/métodos , Fígado , Imagens de Fantasmas
8.
Front Phys ; 102022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36506821

RESUMO

Magnetic resonance imaging (MRI) gradient coils produce acoustic noise due to coil conductor vibrations caused by large Lorentz forces. Accurate sound pressure levels and modeling of heating are essential for the assessment of gradient coil safety. This work reviews the state-of-the-art numerical methods used in accurate gradient coil modeling and prediction of sound pressure levels (SPLs) and temperature rise. We review several approaches proposed for noise level reduction of high-performance gradient coils, with a maximum noise reduction of 20 decibels (dB) demonstrated. An efficient gradient cooling technique is also presented.

9.
IEEE Access ; 10: 25062-25072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600672

RESUMO

Magnetic resonance guided focused ultrasound (MRgFUS) is a non-invasive therapeutic modality for neurodegenerative diseases that employs real-time imaging and thermometry monitoring of targeted regions. MRI is used in guidance of ultrasound treatment; however, the MR image quality in current clinical applications is poor when using the vendor built-in body coil. We present an 8-channel, ultra-thin, flexible, and acoustically transparent receive-only head coil design (FUS-Flex) to improve the signal-to-noise ratio (SNR) and thus the quality of MR images during MRgFUS procedures. Acoustic simulations/experiments exhibit transparency of the FUS-Flex coil as high as 97% at 650 kHz. Electromagnetic simulations show a SNR increase of 13× over the body coil. In vivo results show an increase of the SNR over the body coil by a factor of 7.3 with 2× acceleration (equivalent to 11× without acceleration) in the brain of a healthy volunteer, which agrees well with simulation. These preliminary results show that the use of a FUS-Flex coil in MRgFUS surgery can increase MR image quality, which could yield improved focal precision, real-time intraprocedural anatomical imaging, and real-time 3D thermometry mapping.

10.
IEEE Access ; 9: 140824-140834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722096

RESUMO

The purpose of this study is to investigate feasibility of estimating the specific absorption rate (SAR) in MRI in real time. To this goal, SAR maps are predicted from 3T- and 7T-simulated magnetic resonance (MR) images in 10 realistic human body models via a convolutional neural network. Two-dimensional (2-D) U-Net architectures with varying contraction layers and different convolutional filters were designed to estimate the SAR distribution in realistic body models. Sim4Life (ZMT, Switzerland) was used to create simulated anatomical images and SAR maps at 3T and 7T imaging frequencies for Duke, Ella, Charlie, and Pregnant Women (at 3, 7, and 9 month gestational stages) body models. Mean squared error (MSE) was used as the cost function and the structural similarity index (SSIM) was reported. A 2-D U-Net with 4 contracting (and 4 expanding) layers and 64 convolutional filters at the initial stage showed the best compromise to estimate SAR distributions. Adam optimizer outperformed stochastic gradient descent (SGD) for all cases with an average SSIM of 90.5∓3.6 % and an average MSE of 0.7∓0.6% for head images at 7T, and an SSIM of >85.1∓6.2 % and an MSE of 0.4∓0.4% for 3T body imaging. Algorithms estimated the SAR maps for 224×224 slices under 30 ms. The proposed methodology shows promise to predict real-time SAR in clinical imaging settings without using extra mapping techniques or patient-specific calibrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA