Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Diabetes Res Clin Pract ; 77 Suppl 1: S92-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17452058

RESUMO

To examine the role of muscle AMP-activated protein kinase (AMPK) in maximal exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle, we generated muscle-specific transgenic mice carrying cDNAs of inactive AMPK alpha2 (alpha2i TG). Fed blood glucose was slightly higher in alpha2i TG mice compared to wild type littermates, however, the difference was not statistically significant. In alpha2i TG mice, glucose tolerance was slightly impaired in male, but not in female mice, compared to wild type littermates. Maximal exercise capacity was dramatically reduced in alpha2i TG mice, suggesting that AMPK alpha2 has a critical role in skeletal muscle during exercise. We confirmed that known insulin-independent stimuli of glucose transport including mitochondrial respiration inhibition, hyperosmolarity, and muscle contraction increased both AMPK alpha1 and alpha2 activities in isolated EDL muscle in wild type mice. While, alpha2 activation was severely blunted and alpha1 activation was only slightly reduced in alpha2i TG mice by these insulin independent stimuli compared to wild type mice. Mitochondrial respiration inhibition-induced glucose transport was fully inhibited in isolated EDL muscles in alpha2i TG mice. However, contraction- or hyperosmolarity-induced glucose transport was nearly normal. These results suggest that AMPK alpha2 activation is essential for some, but not all insulin-independent glucose transport.


Assuntos
Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Substituição de Aminoácidos , Animais , Transporte Biológico , Feminino , Glucose/metabolismo , Glicogênio/metabolismo , Insulina/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Rotenona/farmacologia , Sorbitol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA