Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Labelled Comp Radiopharm ; 67(5): 186-196, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661253

RESUMO

Malaria continues to be a serious and debilitating disease. The emergence and spread of high-level resistance to multiple antimalarial drugs by Plasmodium falciparum has brought about an urgent need for new treatments that will be active against multidrug resistant malaria infections. One such treatment, ELQ-331 (MMV-167), an alkoxy carbonate prodrug of 4(1H)-quinolone ELQ-300, is currently in preclinical development with the Medicines for Malaria Venture. Clinical development of ELQ-331 or similar compounds will require the availability of isotopically labeled analogs. Unfortunately, a suitable method for the deuteration of these important compounds was not found in the literature. Here, we describe a facile and scalable method for the deuteration of 4(1H)-quinolone ELQ-300, its alkoxycarbonate prodrug ELQ-331, and their respective N-oxides using deuterated acetic acid.


Assuntos
Técnicas de Química Sintética , Deutério , Quinolonas , Quinolonas/síntese química , Quinolonas/química , Deutério/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/farmacologia
2.
ACS Infect Dis ; 10(4): 1405-1413, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38563132

RESUMO

Endochin-like quinolones (ELQs) define a class of small molecule antimicrobials that target the mitochondrial electron transport chain of various human parasites by inhibiting their cytochrome bc1 complexes. The compounds have shown potent activity against a wide range of protozoan parasites, including the intraerythrocytic parasites Plasmodium and Babesia, the agents of human malaria and babesiosis, respectively. First-generation ELQ compounds were previously found to reduce infection by Babesia microti and Babesia duncani in animal models of human babesiosis but achieved a radical cure only in combination with atovaquone and required further optimization to address pharmacological limitations. Here, we report the identification of two second-generation 3-biaryl ELQ compounds, ELQ-596 and ELQ-650, with potent antibabesial activity in vitro and favorable pharmacological properties. In particular, ELQ-598, a prodrug of ELQ-596, demonstrated high efficacy as an orally administered monotherapy at 10 mg/kg. The compound achieved radical cure in both the chronic model of B. microti-induced babesiosis in immunocompromised mice and the lethal infection model induced by B. duncani in immunocompetent mice. Given its high potency, favorable physicochemical properties, and low toxicity profile, ELQ-596 represents a promising drug for the treatment of human babesiosis.


Assuntos
Babesiose , Quinolonas , Camundongos , Humanos , Animais , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Quinolonas/farmacologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico
3.
Eur J Pharm Sci ; 198: 106795, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729224

RESUMO

The overarching premise of this investigation is that injectable, long-acting antimalarial medication would encourage adherence to a dosage regimen for populations at risk of contracting the disease. To advance support for this goal, we have developed oil-based formulations of ELQ-331 (a prodrug of ELQ-300) that perform as long-acting, injectable chemoprophylactics with drug loading as high as 160 mg/ml of ELQ-331. In a pharmacokinetic study performed with rats, a single intramuscular injection of 12.14 mg/kg maintained higher plasma levels than the previously established minimum fully protective plasma concentration (33.25 ng/ml) of ELQ-300 for more than 4 weeks. The formulations were well tolerated by the rats and the tested dose produced no adverse reactions. We believe that by extending the length of time between subsequent injections, these injectable oil-based solutions of ELQ-331 can offer a more accessible, low-cost option for long-acting disease prevention and reduced transmission in malaria-endemic regions and may also be of use to travelers.


Assuntos
Antimaláricos , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Injeções Intramusculares , Masculino , Ratos , Ratos Sprague-Dawley , Preparações de Ação Retardada/administração & dosagem , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Malária/tratamento farmacológico
4.
ACS Infect Dis ; 10(7): 2419-2442, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862127

RESUMO

ELQ-300 is a potent antimalarial drug with activity against blood, liver, and vector stages of the disease. A prodrug, ELQ-331, exhibits reduced crystallinity and improved in vivo efficacy in preclinical testing, and currently, it is in the developmental pipeline for once-a-week dosing for oral prophylaxis against malaria. Because of the high cost of developing a new drug for human use and the high risk of drug failure, it is prudent to have a back-up plan in place. Here we describe ELQ-596, a member of a new subseries of 3-biaryl-ELQs, with enhanced potency in vitro against multidrug-resistant Plasmodium falciparum parasites. ELQ-598, a prodrug of ELQ-596 with diminished crystallinity, is more effective vs murine malaria than its progenitor ELQ-331 by 4- to 10-fold, suggesting that correspondingly lower doses could be used to protect and cure humans of malaria. With a longer bloodstream half-life in mice compared to its progenitor, ELQ-596 highlights a novel series of next-generation ELQs with the potential for once-monthly dosing for protection against malaria infection. Advances in the preparation of 3-biaryl-ELQs are presented along with preliminary results from experiments to explore key structure-activity relationships for drug potency, selectivity, pharmacokinetics, and safety.


Assuntos
Antimaláricos , Plasmodium falciparum , Quinolonas , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/farmacocinética , Animais , Plasmodium falciparum/efeitos dos fármacos , Camundongos , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/farmacocinética , Malária/tratamento farmacológico , Malária/prevenção & controle , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Feminino , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA