Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 37(8): e23054, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402070

RESUMO

Intercellular communication is a critical process that ensures cooperation between distinct cell types at the embryo-maternal interface. Extracellular vesicles (EVs) are considered to be potent mediators of this communication by transferring biological information in their cargo (e.g., miRNAs) to the recipient cells. miRNAs are small non-coding RNAs that affect the function and fate of neighboring and distant cells by regulating gene expression. Focusing on the maternal side of the dialog, we recently revealed the impact of embryonic signals, including miRNAs, on EV-mediated cell-to-cell communication. In this study, we show the regulatory mechanism of the miR-125b-5p ESCRT-mediated EV biogenesis pathway and the further secretion of EVs by trophoblasts at the time when the crucial steps of implantation are taking place. To test the ability of miR-125b-5p to influence the expression of genes involved in the generation and release of EV subpopulations in porcine conceptuses, we used an ex vivo approach. Next, in silico and in vitro analyses were performed to confirm miRNA-mRNA interactions. Finally, EV trafficking and release were assessed using several imaging and particle analysis tools. Our results indicated that conceptus development and implantation are accompanied by changes in the abundance of EV biogenesis and trafficking machinery. ESCRT-dependent EV biogenesis and the further secretion of EVs were modulated by miR-125b-5p, specifically impacting the ESCRT-II complex (via VPS36) and EV trafficking in primary porcine trophoblast cells. The identified miRNA-ESCRT interplay led to the generation and secretion of specific subpopulations of EVs. miRNA present at the embryo-maternal interface governs EV-mediated communication between the mother and the developing conceptus, leading to the generation, trafficking, and release of characteristic subpopulations of EVs.


Assuntos
Vesículas Extracelulares , MicroRNAs , Suínos , Animais , Trofoblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Implantação do Embrião , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
2.
Theriogenology ; 128: 193-200, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776689

RESUMO

Necroptosis is an alternative form of programmed cell death regulated by receptor-interacting protein kinase (RIPK) 1 and 3-dependent. In the present study, to clarify if necroptosis in luteal endothelial cells (LECs) participates and contributes for bovine luteolysis, we investigated RIPK1 and RIPK3 localization in luteal tissue and their expression in cultured LECs after treatment with selected immune factors - mediators of luteolytic action of prostaglandin F2α (PGF). In addition, effects of tumor necrosis factor α (TNF; 2.3 nM) in combination with interferon γ (IFNG; 2.5 nM), and/or nitric oxide donor - NONOate (100 µM) on viability and CASP3 activity in the cultured LECs were investigated. Furthermore, effects of a RIPK1 inhibitor (necrostatin-1, Nec-1; 50 µM) on RIPKs and CASPs expression, were evaluated. Localization of RIPK1 and RIPK3 protein in the cultured LECs were determined. In cultured LECs, expression of RIPKs mRNA were up-regulated by TNF + IFNG at 12 h, and by PGF (1 µM) or NONOate at 24 h, respectively (P < 0.05). Although NONOate decreased cell viability, it prevented TNF + IFNG-stimulated CASP3 activity in cultured LECs. Nec-1 prevented TNF + IFNG-induced RIPK1 and CASP3 mRNA expression at 12 h and prevented RIPK3 mRNA expression. These findings suggest that RIPKs-dependent necroptosis which are induced by TNF + IFNG, PGF or NO could be potent mechanism responsible for LECs cell death and disappearance of luteal capillaries in regressing bovine CL.


Assuntos
Bovinos/fisiologia , Morte Celular/fisiologia , Células Endoteliais/citologia , Luteólise/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Corpo Lúteo/metabolismo , Feminino , Imuno-Histoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA