Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Environ Manage ; 326(Pt A): 116602, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375429

RESUMO

In the current situation of a serious raw material crisis related to the disruption of supply chains, the bioeconomy is of particular significance. Rising prices and the problem with the availability of natural gas have made N fertilizers production very expensive. It is expected that due to natural gas shortages, conventional production of nitrogen fertilizers by chemical synthesis will be hindered in the coming season. An important alternative and an opportunity to solve the problems of fertilizer nitrogen availability are biological wastewater treatment plants, which can be treated as a renewable biological nitrogen mines. Sewage sludge (including activated sludge) contains up to 6-8% DM. N. Considering the quantity of sewage sludge generated in wastewater treatment plants, it can become an important raw material for the sustainable production of organic-mineral fertilizers from renewable resources available locally, with a low carbon footprint. Furthermore, the sewage sludge management method should take nitrogen retention into account and should not allow the emission of greenhouse gases containing nitrogen. This article analyzes the technological solutions of nitrogen recovery for fertilization purposes from biological wastewater treatment plants in the context of a new and difficult resource situation. Conventional and new nitrogen recovery methods were analyzed from the perspective of the current legal situation. An attempt was made to evaluate the possibility of implementing the assumptions of the circular economy through the recovery of renewable nitrogen resources from municipal wastewater treatment plants.


Assuntos
Esgotos , Purificação da Água , Fertilizantes , Nitrogênio/análise , Gás Natural
2.
J Environ Manage ; 338: 117794, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996565

RESUMO

Leachate from separate digesters in biological wastewater treatment plants contains valuable biogenic compounds that can serve as fertilizer nutrients. In this study, a method was developed to utilize leachate from sewage sludge dewatering as a raw material for the preparation of a plant conditioner, providing water, nutrients, and growth-stimulating amino acids. A chemical conditioning procedure (65% HNO3) was used to prepare the leachate solution for fertilization. The feasibility of producing an amino acid-based fertilizer using shrimp shells and inorganic acids (96% H2SO4 and 85% H3PO4) was also demonstrated. Microbiological analysis confirmed the safety of the formulations, and chelation of micronutrients with available amino acids was proven (up to 100% chelating degree). The bioavailability of all nutrients was confirmed through extraction tests (extraction in neutral ammonium citrate). Germination tests showed similar fresh plant masses to those with commercial preparations, demonstrating the effectiveness of the developed technology. This approach aligns with circular economy principles and sustainable development and contributes to mitigating the impacts of climate change.


Assuntos
Fertilizantes , Esgotos , Esgotos/química , Águas Residuárias , Nutrientes , Aminoácidos
3.
Environ Res ; 214(Pt 2): 113825, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835164

RESUMO

Poultry breeding takes place in intensive, high-production systems characterized by high animal density, which is a source of harmful emission of odorous volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S) and greenhouse gases, which in turn sustain animal welfare. This study identified and examined the characteristics of chemical compounds emitted in intensive poultry farming (laying hens, broilers) and their toxicity, which led to recommending methods of deodorization. Emphasis was placed on the law relative to air purification in poultry farms. Various methods of air treatment in poultry farms have been described: the modification of animal diet to improve nutrient retention and decrease the amount of their excrement; chemical oxidation technologies (ozonation, photocatalysis, Fenton reaction); various types/brands of biofilters, bioscrubbers and membrane reactors. Numerous studies show that biofilters can reduce ammonia emissions by 51%, hydrogen sulfide by 80%, odors by 67%, while scrubbers brings down ammonia emissions by 77% and odors by 42%, and the application of UV light lowers ammonia emissions by 28%, hydrogen sulfide by 55%, odors by 69% and VOCs by 52%. The paper presents both the solutions currently used in poultry farming and those which are currently in the research and development phase and, as innovative solutions, could be implemented in the near future.


Assuntos
Poluentes Atmosféricos , Sulfeto de Hidrogênio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Amônia/análise , Animais , Galinhas , Fazendas , Feminino , Gases , Aves Domésticas , Compostos Orgânicos Voláteis/análise
4.
J Environ Manage ; 321: 116002, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104889

RESUMO

The aim of the research work was to present a multilayer hydrogel capsule with controlled nutrient release properties as an innovative fertilizer designed for sustainable agriculture. Preparation of the capsules included the following steps: sorption of micronutrients (Cu, Mn, Zn) on eggshells (1) and their immobilization in sodium alginate, with the crosslinking agent being the NPK solution (2). The capsules were coated with an additional layer of a mixture of biopolymers (0.79% alginate, 0.24% carboxymethylcellulose and 8.07% starch)by means of dipping and spraying techniques. The biocomposites were characterized by limited (<10% within 100 h for the structures encapsulated by the dipping method) release of fertilizer ions (except for small K+ ions). The hydrogel fertilizer formulations were analyzed for physicochemical properties such as macro- and micronutrient content, surface morphology analysis, coating structure evaluation, mechanical properties, swelling and drying kinetics. High nutrient bioavailability was confirmed in vitro (extraction in water and neutral ammonium citrate). Germination and pot tests have revealed that the application of multicomponent hydrogel fertilizers increases the length of cucumber roots by 20%, compared to the commercial product.


Assuntos
Fertilizantes , Hidrogéis , Agricultura , Alginatos , Cápsulas , Fertilizantes/análise
5.
Environ Res ; 197: 111050, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753074

RESUMO

This paper presents the latest overview of the environmental impact of wastes from the non-ferrous metallurgical industry. Ashes, slags and dusts - by-products from mining and metal processing - are sources of toxic metals, such as Pb, Cd, Hg, As, Al, as well as particulate matter. Physical, chemical and biological processes transform industrial wastes and cause water, soil and air pollution. Improperly protected heaps are subject to wind erosion and rain water leaching. Heavy metals and particulate matter are transported over long distances, contaminating the soil, living areas, watercourses, while in combination with mist they create smog. Water erosion releases heavy metals, which are leached into groundwater or surface runoff. This paper focuses on the range of pollution emissions from non-ferrous metallurgy wastes, hazards, mechanisms of their formation and fallouts, on the current state of technology and technological risk reduction solutions. The impact of pollution on human health and the biosphere, and methods of waste reduction in this industry sector are also presented. A sustainable and modern mining industry is the first step to cleaner production.


Assuntos
Metais Pesados , Poluentes do Solo , Cobre , Monitoramento Ambiental , Poluição Ambiental , Humanos , Resíduos Industriais/análise , Metalurgia , Metais Pesados/análise , Mineração , Poluentes do Solo/análise
6.
J Environ Manage ; 299: 113480, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34474255

RESUMO

The tremendous amount of waste is an environmental and social problem worldwide. The agri-food sector is the largest producer of waste and requires the extensive use of fertilizers, which entails the need to look for innovative solutions in waste management. Properly recycled bio-waste can be reused as fertilizer. Polymer capsules with immobilized waste biomass can be applied as carriers for fertilizer nutrients. The amount of components exerts a certain influence on the effectiveness of copper ions binding. The most important physicochemical properties of biocomposites, such as swelling, SEM (Scanning Electron Microscopy) and FTIR (Fourier Transform Infrared Spectroscopy) were investigated. FTIR analyzes revealed that carboxyl and hydroxyl groups play a key role in Cu2+ ion binding. Morphology analysis showed that ion binding leads to homogenization of the composite surface, while coating the structure makes it more regular and cohesive. The sorption kinetics and the determination of the process's equilibrium parameters (Qmax = 29.4 ± 0.493 mg g-1) play an important role. The study of Cu2+ ion release in different media showed that the chitosan layer slowed down the diffusion of cations by about 50% in NaNO3 (1% m/m) solution. Preliminary studies of the applicability of the capsules in germination tests demonstrate that the biocomposites have no phytotoxic effects on the test plant. The chitosan coating slows the release of Cu2+ ions by about 20% compared to uncoated capsules. New fertilizer formulations containing chitosan-encapsulated hydrogel with biomass-immobilized micronutrients can be applied for precision agriculture to minimize the loss of fertilizer nutrients to the environment. These fertilizers could be used to cultivate houseplants and greenhouse crops.


Assuntos
Quitosana , Fertilizantes , Agricultura , Hidrogéis , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Environ Manage ; 291: 112693, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962281

RESUMO

Sustainable development in agriculture brings both environmental and economic benefits. Contemporary agriculture is also about increasing nutrient use efficiency, especially nitrogen, as the critical nutrient causing the most significant environmental pressure. This creates the need to produce highly digestible protein feed with high bioavailability, reducing losses of biogenic elements to feces. In this review, the latest trends and the potential for their implementation in sustainable agriculture have been compared, as well as the need to reduce the negative environmental impact of agriculture has been demonstrated. Applying local protein sources to feed animals reduces greenhouse gas emissions associated with transportation. The production of highly digestible fodder leads to a reduction in environmental pollution caused by excessive nitrogen outflows. Another approach indecreasing ammonia emissions from livestock farming is feed protein reduction and amino acid supplementation. All of the aforementioned approaches may result in beneficial long-term changes, contributing to environmental safety, animal welfare and human health.


Assuntos
Gases de Efeito Estufa , Nitrogênio , Agricultura , Ração Animal , Animais , Meio Ambiente , Humanos , Gado
8.
Materials (Basel) ; 17(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930366

RESUMO

Packaging and packaging technology constitute a pivotal industry deeply intertwined with our daily lives and prevalent in various settings, including grocery stores, supermarkets, restaurants, and pharmacies. The industry is constantly evolving thanks to technological advances. This article delves into the dynamic landscape of 3D printing in packaging, exploring its profound implications and potential. While this article highlights the advantages of traditional packaging approaches, it also highlights the many benefits of 3D printing technology. It describes how 3D printing enables personalization, rapid prototyping, and low-cost production, streamlining packaging design and manufacturing processes. Offering innovative solutions in design, functionality, and accessibility, the potential of 3D printing in packaging is promising.

9.
Materials (Basel) ; 17(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612092

RESUMO

The optimization of structure and thermal properties in 3D-printed insulation materials remains an underexplored area in the literature. This study aims to address this gap by investigating the impact of 3D printing on the thermal properties of manufactured cellular composites. The materials studied were closed-cell foams with a complex cell structure based on the Voronoi cell model, manufactured using incremental technology (3D printing). The influence of the cellular structure of the composite, the type of material used, and the number of layers in the composite structure on its thermal properties, i.e., thermal conductivity coefficient, thermal resistance, and coefficient of heat transfer, was analyzed. Samples of different types of thermosetting resins, characterized by different values of emissivity coefficient, were analyzed. It was shown that both the type of material, the number of layers of the composite, and the number of pores in its structure significantly affect its thermal insulating properties. Thermal conductivity and permeability depended on the number of layers and decreased up to 30% as the number of layers increased from one to four, while thermal resistance increased to 35%. The results indicate that material structure is key in regulating thermal conduction. Controlling the number of cells in a given volume of composite (and thus the size of the air cells) and the number of layers in the composite can be an effective tool in designing materials with high insulation performance. Among the prototype composites produced, the best thermal performance was that of the metalized four-layer cellular composites (λ = 0.035 ± 0.002 W/m·K, Rc = 1.15 ± 0.02 K·m2/W, U = 0.76 ± 0.01 W/m2·K).

10.
Environ Sci Pollut Res Int ; 31(12): 17822-17834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253836

RESUMO

Climate change, soil erosion, air and water pollution, or problems related to waste management are just some of the many problems in the modern world. Comprehensive solutions are sought to reduce the effects of progressive environmental degradation according to the assumptions of the concept of sustainable development. The paper presents a technological concept that may be a response to these problems. The presented solution assumes full utilization of slaughterhouse waste with the simultaneous recovery of nutrients and the production of functional fertilizing products with designed properties. Four liquid fertilizer formulations with the following composition were prepared: N - 2.30-3.64%, P2O5 - 2.18-9.66%, and K2O - 0.11-4.49%. The manufactured products were characterized by a high sulfur content and the addition of microelements. The tests carried out on plants confirmed their effectiveness similar to commercial mineral fertilizers. An increase in green matter yield of peas by 5 t/ha and maize by 2 t/ha was observed. The lack of microbiological risk associated with their use has been proven. Good efficiency with a simultaneous reduction in production costs resulting from the use of waste materials, as well as limiting the negative impact of poultry farms on the environment, make this solution an attractive alternative to mineral fertilizers, in line with the assumptions of the circular economy.


Assuntos
Matadouros , Fertilizantes , Animais , Aves Domésticas , Minerais , Esgotos , Solo , Agricultura
11.
Materials (Basel) ; 17(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673173

RESUMO

Hydrogels, versatile materials used in various applications such as medicine, possess properties crucial for their specific applications, significantly influenced by their preparation methods. This study synthesized 18 different types of hydrogels using sodium alginate (SA) and two molecular weights of polyvinyl alcohol (PVA). Crosslinking agents such as aqueous solutions of calcium (Ca2+) and copper (Cu2+) ions and solutions of these ions in boric acid were utilized. The hydrogels were subjected to compression strength tests and drying kinetics analysis. Additionally, six hydrogel variants containing larger PVA particles underwent Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) post-drying. Some samples were lyophilized, and their surface morphology was examined using scanning electron microscopy (SEM). The results indicate that the choice of crosslinking method significantly impacts the physicochemical properties of the hydrogels. Crosslinking in solutions with higher concentrations of crosslinking ions enhanced mechanical properties and thermal stability. Conversely, using copper ions instead of calcium resulted in slower drying kinetics and reduced thermal stability. Notably, employing boric acid as a crosslinking agent for hydrogels containing heavier PVA molecules led to considerable improvements in mechanical properties and thermal stability.

12.
Materials (Basel) ; 16(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138674

RESUMO

Additive manufacturing, with its wide range of printable materials, and ability to minimize material usage, reduce labor costs, and minimize waste, has sparked a growing enthusiasm among researchers for the production of advanced multifunctional composites. This review evaluates recent reports on polymer composites used in 3D printing, and their printing techniques, with special emphasis on composites containing different types of additives (inorganic and biomass-derived) that support the structure of the prints. Possible applications for additive 3D printing have also been identified. The biodegradation potential of polymeric biocomposites was analyzed and possible pathways for testing in different environments (aqueous, soil, and compost) were identified, including different methods for evaluating the degree of degradation of samples. Guidelines for future research to ensure environmental safety were also identified.

13.
Environ Pollut ; 319: 120924, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565906

RESUMO

A technological solution was developed to process slaughter waste and farm manure and transform them into organic and mineral fertilizers. It has been shown that the formation of an enclosure on a goose farm from nitrogen-binding substances (brown coal, a mixture of brown coal with magnesite, used ash substrate) has a positive effect on reducing nitrogen emissions, even to about 80%. The presented solution is in line with ecological trends and ensures comprehensive management of agri-food waste. It reduces the loss of valuable nutrients from renewable sources, increases the efficiency of fertilizers and reduces the environmental nuisance of poultry farms. Organic-mineral fertilizers made from slaughterhouse waste and poultry manure were as effective as expensive commercial mineral fertilizers. New fertilizers helped to obtain a yield similar to the groups fertilized with mineral fertilizers: 11 t per ha for maize (grain), 0.8 t per ha for mustard (seed), 10 kg per 1 m2 of radish (all), and 18.5 kg per 1 m2 of beet (whole) while reducing production costs thanks to the use of waste materials.


Assuntos
Eliminação de Resíduos , Solo , Animais , Solo/química , Fertilizantes/análise , Esterco , Alimentos , Agricultura , Minerais , Nitrogênio/análise , Carvão Mineral
14.
Bioengineered ; 14(1): 2184480, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37381625

RESUMO

This paper reviews the scientific literature on the latest technologies for treating waste by chemical hydrolysis, enzymatic hydrolysis and supporting processes. Particular attention is focused on wastes of biological origin, especially high-protein materials and those containing fats and sugars, as valuable components can be extracted from these recyclables to produce plant growth-stimulating compounds and animal feed, chemicals, biofuels or biopolymers. The wastes with the greatest potential were identified and the legislative regulations related to their processing were discussed. Chemical and enzymatic hydrolysis were compared and their main applications directions and important process parameters were indicated, as well as the need to optimize them in order to increase the efficiency of extraction of valuable components.


Assuntos
Ração Animal , Biocombustíveis , Animais , Hidrólise , Desenvolvimento Vegetal , Tecnologia
15.
Environ Sci Pollut Res Int ; 30(4): 8759-8777, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35589903

RESUMO

The studies presented in this work show that solid tannery waste-like shavings can be used as high-protein materials for fertilizer production following the concept of the circular economy. To select appropriate process parameters (mass ratio of shavings meal to the hydrolyzing agent (S:L), hydrolysis medium concentration, temperature) and to ensure the highest possible hydrolysis efficiency, it is useful to apply the well-known response surface methodology (RSM). The analyses revealed that chromium shavings (SCr) were most preferably treated with 10% KOH in a ratio of S:L 1:1 with the process being carried out at 160 °C (6.59% N). The optimal hydrolysis conditions for non-chromium (S) shavings were: S:L ratio 1:2, 10% H2SO4, and temperature 160 °C (4.08% N). Chromium concentrations in hydrolysates from S and SCr shavings obtained under optimal conditions were 15.2 mg/kg and 9483 mg/kg, respectively. Hydrolysate samples were analyzed by reversed-phase high-pressure liquid chromatography (RP-HPLC) that revealed that the type of hydrolysis (acidic/alkaline) affects the amino acid profile. Approximately 4.5 times more amino acids were extracted in the KOH environment than during acidic treatment. The hydrolysates contained mainly glycine, alanine, and proline, which are primarily responsible for stimulating plant growth by supporting chlorophyll synthesis, chelating micronutrients, improving pollen fertility, or resistance to low temperatures. The conversion of tannery waste into fertilizer requires the control of contaminant levels, especially chromium, which can oxidize to the carcinogenic form Cr(VI) that is hazardous to humans and the environment.


Assuntos
Fertilizantes , Nitrogênio , Humanos , Fertilizantes/análise , Nitrogênio/análise , Resíduos Industriais/análise , Cromo/química , Temperatura , Resíduos Sólidos/análise , Curtume
16.
Water Environ Res ; 84(2): 162-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22515067

RESUMO

Batch sorption experiments were carried out for the removal of cationic dyes (methylene blue and malachite green) from their aqueous solutions using sorbent made from fly ash-a waste material. Effects of various experimental parameters: initial dye concentration, contact time, pH, adsorbent dosage, solution temperature, surfactant addition and ionic strength on the fly ash sorption of dyes were evaluated. The isothermal data for sorption followed the Langmuir model. The maximum sorption capacity obtained for methylene blue and malachite green was 36.05 mg/g and 40.65 mg/g, respectively. Kinetic studies indicate that sorption on fly ash follows the pseudo-second order kinetics. Present research suggests that fly ash could be an appropriate adsorbent for the removal of basic dyes from aqueous solutions.


Assuntos
Cinza de Carvão/química , Corantes/química , Resíduos Industriais , Indústria Têxtil , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Concentração Osmolar , Tensoativos , Temperatura , Termodinâmica
17.
Bioengineered ; 13(5): 13474-13506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36700471

RESUMO

Phosphorus is one of the most important macronutrients needed for the growth of plants. The fertilizer production market uses 80% of natural, non-renewable phosphorus resources in the form of phosphate rock. The depletion of those deposits forces a search for other alternatives, including biological waste. This review aims to indicate the most important ways to recover phosphorus from biowaste, with particular emphasis on wastewater, sewage sludge, manure, slaughter or food waste. A comparison of utilized methods and directions for future research based on the latest research is presented. Combining biological, chemical, and physical methods with thermal treatment appears to be the most effective way for the treatment of wastewater sludge in terms of phosphorus recovery. Hydrothermal, thermochemical, and adsorption on thermally treated adsorbents are characterized by a high phosphorus recovery rate (over 95%). For animal by-products and other biological waste, chemical methods seems to be the most optimal solution with a recovery rate over 96%. Due to its large volume and relatively low phosphorus content, wastewater is a resource that requires additional treatment to recover the highest possible amount of phosphorus. Pretreatment of wastewater with combined methods seems to be a possible way to improve phosphorus recovery. A compressive evaluation of combined methods is crucial for future research in this area.


Assuntos
Eliminação de Resíduos , Águas Residuárias , Esgotos , Fósforo , Eliminação de Resíduos Líquidos/métodos , Alimentos
18.
Chemosphere ; 295: 133799, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35114259

RESUMO

The increase in livestock production creates a serious problem of managing animal waste and by-products. Among the wide range of waste valorization methods available, anaerobic digestion is very promising. It is a form of material recycling that also produces renewable energy in the form of biogas, which is reminiscent of energy recycling. The effluent and digestate from the anaerobic digestion process need to be processed further. These materials are widely used in agriculture due to their composition. Both the liquid and solid fractions of digestate are high in nitrogen, making them a valuable source for plants. Before soil or foliar application, conditioning (e.g., with inorganic acids) and neutralization (e.g., with potassium hydroxide) is required to eliminate odorous compounds and microorganisms. Various methods of conducting the process by anaerobic digestion (use of additives increasing activity of microorganisms, co-digestion, multiple techniques of substrate preparation) and the possibility of controlling process parameters such as optimal C/N ratio (15-30), optimal temperature (psychrophilic (<20 °C), mesophilic (35-37 °C) and thermophilic (55 °C) for microorganism activity ensure high efficiency of the process. Literature data describing tests of various digestates on different plants prove high efficiency, determined by yield increase (even by 28%), nitrogen uptake (by 20%) or phosphorus recovery rate (by 43%) or increase of biometric parameters (e.g., leaf area).


Assuntos
Agricultura , Fertilizantes , Agricultura/métodos , Anaerobiose , Animais , Biocombustíveis , Fertilizantes/análise , Solo/química
19.
Bioengineered ; 13(2): 4537-4556, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132911

RESUMO

This work is a systematic review that reports state-of-the-art in removal of pharmaceuticals from water and wastewater by photosynthetic organisms in photobioreactors. The PRISMA protocol-based review of the most recent literature data from the last 10 years (2011-2021) was reported. Articles were searched by the combination of the following keywords: photobioreactor, pharmaceuticals, drugs, hormones, antibiotics, biodegradation, removal, wastewater treatment. The review focuses on original research papers (not reviews), collected in 3 scientific databases: Scopus, Web of Knowledge, PubMed. The review considered the following factors: type of microorganisms, type of micropollutants removed, degradation efficiency and associated products, types of photosynthetic organisms and photobioreactor types. The conclusion from the systematic review is that the main factors that limit widespread pharmaceuticals removal in photobioreactors are high costs and the problem of low efficiency related with low concentrations of pharmaceuticals. The review indicated a need for further research in this area due to increasing amounts of metabolites in the food chain, such as p-aminophenol and estrone, which can cause harm to people and ichthyofauna. Pharmaceuticals removal can be improved by adapting the type of microorganism used to the type of contamination and implementing photoperiods, which increase the removal efficiency of e.g. sulfamethazine by up to 28%. In the future, it is necessary to search for new solutions in terms of the construction of photobioreactors, as well as for more effective species in terms of pharmaceuticals biodegradation that can survive the competition with other strains during water and wastewater treatment.


Assuntos
Biodegradação Ambiental , Preparações Farmacêuticas , Fotobiorreatores , Poluentes Químicos da Água , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Preparações Farmacêuticas/isolamento & purificação , Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo
20.
Chemosphere ; 297: 134226, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35271895

RESUMO

This work proposes a method to valorize lead slag for fertilizer purposes. The research concept was to selectively recover valuable microelements (Cu(II), Fe(II), Zn(II) in an amount of at least 0.2% m/v of each) by chemical leaching while retaining toxic elements in the slag (i.e. As and Pb). Among acids, hydroxides, salts and their mixtures tested for slag treatment, it was potassium hydrogen sulfate and ammonia liquor under strongly oxidizing conditions (in the presence of hydrogen peroxide) that proved to be the most effective leaching agents. Response Surface Methodology applied to optimize the slag leaching conditions set the most favorable process parameters (concentration of leaching agents, slag to reagent weight ratio, and temperature). As a result, the concentration of Cu(II) in the extract was 3751 mg/L (for ammonia liquor) and Fe(II) and Zn(II) concentrations in potassium hydrogen sulfate were 4738 mg/L and 6102 mg/L, respectively. To close the life cycle of the waste, immobilization in polyethylene and binding to cement were indicated as methods to manage the solid waste material after leaching. The mixed extracts rich in Cu(II), Fe(II) and Zn(II) ions were tested in germination tests on cucumber. No phytotoxic effect was observed, which raises the possibility of utilizing the solutions after chemical leaching of slag as an alternative source of micronutrients for the production of multicomponent fertilizers. The results are promising and fit in the assumptions of circular economy.


Assuntos
Resíduos Perigosos , Metais Pesados , Amônia , Compostos Ferrosos , Fertilizantes , Hidrogênio , Metais Pesados/análise , Potássio , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA