Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 137(2): 209-226, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30413934

RESUMO

Cardiovascular (CV)- and lifestyle-associated risk factors (RFs) are increasingly recognized as important for Alzheimer's disease (AD) pathogenesis. Beyond the ε4 allele of apolipoprotein E (APOE), comparatively little is known about whether CV-associated genes also increase risk for AD. Using large genome-wide association studies and validated tools to quantify genetic overlap, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with AD and one or more CV-associated RFs, namely body mass index (BMI), type 2 diabetes (T2D), coronary artery disease (CAD), waist hip ratio (WHR), total cholesterol (TC), triglycerides (TG), low-density (LDL) and high-density lipoprotein (HDL). In fold enrichment plots, we observed robust genetic enrichment in AD as a function of plasma lipids (TG, TC, LDL, and HDL); we found minimal AD genetic enrichment conditional on BMI, T2D, CAD, and WHR. Beyond APOE, at conjunction FDR < 0.05 we identified 90 SNPs on 19 different chromosomes that were jointly associated with AD and CV-associated outcomes. In meta-analyses across three independent cohorts, we found four novel loci within MBLAC1 (chromosome 7, meta-p = 1.44 × 10-9), MINK1 (chromosome 17, meta-p = 1.98 × 10-7) and two chromosome 11 SNPs within the MTCH2/SPI1 region (closest gene = DDB2, meta-p = 7.01 × 10-7 and closest gene = MYBPC3, meta-p = 5.62 × 10-8). In a large 'AD-by-proxy' cohort from the UK Biobank, we replicated three of the four novel AD/CV pleiotropic SNPs, namely variants within MINK1, MBLAC1, and DDB2. Expression of MBLAC1, SPI1, MINK1 and DDB2 was differentially altered within postmortem AD brains. Beyond APOE, we show that the polygenic component of AD is enriched for lipid-associated RFs. We pinpoint a subset of cardiovascular-associated genes that strongly increase the risk for AD. Our collective findings support a disease model in which cardiovascular biology is integral to the development of clinical AD in a subset of individuals.


Assuntos
Doença de Alzheimer/genética , Doenças Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Apolipoproteínas E/genética , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
2.
PLoS Genet ; 12(1): e1005803, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26808560

RESUMO

Most of the genetic architecture of schizophrenia (SCZ) has not yet been identified. Here, we apply a novel statistical algorithm called Covariate-Modulated Mixture Modeling (CM3), which incorporates auxiliary information (heterozygosity, total linkage disequilibrium, genomic annotations, pleiotropy) for each single nucleotide polymorphism (SNP) to enable more accurate estimation of replication probabilities, conditional on the observed test statistic ("z-score") of the SNP. We use a multiple logistic regression on z-scores to combine information from auxiliary information to derive a "relative enrichment score" for each SNP. For each stratum of these relative enrichment scores, we obtain nonparametric estimates of posterior expected test statistics and replication probabilities as a function of discovery z-scores, using a resampling-based approach that repeatedly and randomly partitions meta-analysis sub-studies into training and replication samples. We fit a scale mixture of two Gaussians model to each stratum, obtaining parameter estimates that minimize the sum of squared differences of the scale-mixture model with the stratified nonparametric estimates. We apply this approach to the recent genome-wide association study (GWAS) of SCZ (n = 82,315), obtaining a good fit between the model-based and observed effect sizes and replication probabilities. We observed that SNPs with low enrichment scores replicate with a lower probability than SNPs with high enrichment scores even when both they are genome-wide significant (p < 5x10-8). There were 693 and 219 independent loci with model-based replication rates ≥80% and ≥90%, respectively. Compared to analyses not incorporating relative enrichment scores, CM3 increased out-of-sample yield for SNPs that replicate at a given rate. This demonstrates that replication probabilities can be more accurately estimated using prior enrichment information with CM3.


Assuntos
Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Genômica , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
3.
Circ Res ; 118(1): 83-94, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26487741

RESUMO

RATIONALE: Coronary artery disease (CAD) is a critical determinant of morbidity and mortality. Previous studies have identified several cardiovascular disease risk factors, which may partly arise from a shared genetic basis with CAD, and thus be useful for discovery of CAD genes. OBJECTIVE: We aimed to improve discovery of CAD genes and inform the pathogenic relationship between CAD and several cardiovascular disease risk factors using a shared polygenic signal-informed statistical framework. METHODS AND RESULTS: Using genome-wide association studies summary statistics and shared polygenic pleiotropy-informed conditional and conjunctional false discovery rate methodology, we systematically investigated genetic overlap between CAD and 8 traits related to cardiovascular disease risk factors: low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, type 2 diabetes mellitus, C-reactive protein, body mass index, systolic blood pressure, and type 1 diabetes mellitus. We found significant enrichment of single-nucleotide polymorphisms associated with CAD as a function of their association with low-density lipoprotein, high-density lipoprotein, triglycerides, type 2 diabetes mellitus, C-reactive protein, body mass index, systolic blood pressure, and type 1 diabetes mellitus. Applying the conditional false discovery rate method to the enriched phenotypes, we identified 67 novel loci associated with CAD (overall conditional false discovery rate <0.01). Furthermore, we identified 53 loci with significant effects in both CAD and at least 1 of low-density lipoprotein, high-density lipoprotein, triglycerides, type 2 diabetes mellitus, C-reactive protein, systolic blood pressure, and type 1 diabetes mellitus. CONCLUSIONS: The observed polygenic overlap between CAD and cardiometabolic risk factors indicates a pathogenic relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to CAD.


Assuntos
Doença da Artéria Coronariana/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Estudos de Coortes , Doença da Artéria Coronariana/diagnóstico , Feminino , Humanos , Estudos Prospectivos , Fatores de Risco
4.
PLoS Genet ; 11(12): e1005717, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26714184

RESUMO

Characterizing the distribution of effects from genome-wide genotyping data is crucial for understanding important aspects of the genetic architecture of complex traits, such as number or proportion of non-null loci, average proportion of phenotypic variance explained per non-null effect, power for discovery, and polygenic risk prediction. To this end, previous work has used effect-size models based on various distributions, including the normal and normal mixture distributions, among others. In this paper we propose a scale mixture of two normals model for effect size distributions of genome-wide association study (GWAS) test statistics. Test statistics corresponding to null associations are modeled as random draws from a normal distribution with zero mean; test statistics corresponding to non-null associations are also modeled as normal with zero mean, but with larger variance. The model is fit via minimizing discrepancies between the parametric mixture model and resampling-based nonparametric estimates of replication effect sizes and variances. We describe in detail the implications of this model for estimation of the non-null proportion, the probability of replication in de novo samples, the local false discovery rate, and power for discovery of a specified proportion of phenotypic variance explained from additive effects of loci surpassing a given significance threshold. We also examine the crucial issue of the impact of linkage disequilibrium (LD) on effect sizes and parameter estimates, both analytically and in simulations. We apply this approach to meta-analysis test statistics from two large GWAS, one for Crohn's disease (CD) and the other for schizophrenia (SZ). A scale mixture of two normals distribution provides an excellent fit to the SZ nonparametric replication effect size estimates. While capturing the general behavior of the data, this mixture model underestimates the tails of the CD effect size distribution. We discuss the implications of pervasive small but replicating effects in CD and SZ on genomic control and power. Finally, we conclude that, despite having very similar estimates of variance explained by genotyped SNPs, CD and SZ have a broadly dissimilar genetic architecture, due to differing mean effect size and proportion of non-null loci.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Teorema de Bayes , Doença de Crohn/genética , Humanos , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética
5.
BMC Genomics ; 18(1): 270, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359301

RESUMO

BACKGROUND: Epigenetic information can be used to identify clinically relevant genomic variants single nucleotide polymorphisms (SNPs) of functional importance in cancer development. Super-enhancers are cell-specific DNA elements, acting to determine tissue or cell identity and driving tumor progression. Although previous approaches have been tried to explain risk associated with SNPs in regulatory DNA elements, so far epigenetic readers such as bromodomain containing protein 4 (BRD4) and super-enhancers have not been used to annotate SNPs. In prostate cancer (PC), androgen receptor (AR) binding sites to chromatin have been used to inform functional annotations of SNPs. RESULTS: Here we establish criteria for enhancer mapping which are applicable to other diseases and traits to achieve the optimal tissue-specific enrichment of PC risk SNPs. We used stratified Q-Q plots and Fisher test to assess the differential enrichment of SNPs mapping to specific categories of enhancers. We find that BRD4 is the key discriminant of tissue-specific enhancers, showing that it is more powerful than AR binding information to capture PC specific risk loci, and can be used with similar effect in breast cancer (BC) and applied to other diseases such as schizophrenia. CONCLUSIONS: This is the first study to evaluate the enrichment of epigenetic readers in genome-wide associations studies for SNPs within enhancers, and provides a powerful tool for enriching and prioritizing PC and BC genetic risk loci. Our study represents a proof of principle applicable to other diseases and traits that can be used to redefine molecular mechanisms of human phenotypic variation.


Assuntos
Neoplasias da Mama/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/genética , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo , Sítios de Ligação , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular , Mapeamento Cromossômico , Biologia Computacional/métodos , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Masculino , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/metabolismo , Ligação Proteica , Receptores Androgênicos/metabolismo
6.
PLoS Med ; 14(3): e1002258, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28323831

RESUMO

BACKGROUND: Identifying individuals at risk for developing Alzheimer disease (AD) is of utmost importance. Although genetic studies have identified AD-associated SNPs in APOE and other genes, genetic information has not been integrated into an epidemiological framework for risk prediction. METHODS AND FINDINGS: Using genotype data from 17,008 AD cases and 37,154 controls from the International Genomics of Alzheimer's Project (IGAP Stage 1), we identified AD-associated SNPs (at p < 10-5). We then integrated these AD-associated SNPs into a Cox proportional hazard model using genotype data from a subset of 6,409 AD patients and 9,386 older controls from Phase 1 of the Alzheimer's Disease Genetics Consortium (ADGC), providing a polygenic hazard score (PHS) for each participant. By combining population-based incidence rates and the genotype-derived PHS for each individual, we derived estimates of instantaneous risk for developing AD, based on genotype and age, and tested replication in multiple independent cohorts (ADGC Phase 2, National Institute on Aging Alzheimer's Disease Center [NIA ADC], and Alzheimer's Disease Neuroimaging Initiative [ADNI], total n = 20,680). Within the ADGC Phase 1 cohort, individuals in the highest PHS quartile developed AD at a considerably lower age and had the highest yearly AD incidence rate. Among APOE ε3/3 individuals, the PHS modified expected age of AD onset by more than 10 y between the lowest and highest deciles (hazard ratio 3.34, 95% CI 2.62-4.24, p = 1.0 × 10-22). In independent cohorts, the PHS strongly predicted empirical age of AD onset (ADGC Phase 2, r = 0.90, p = 1.1 × 10-26) and longitudinal progression from normal aging to AD (NIA ADC, Cochran-Armitage trend test, p = 1.5 × 10-10), and was associated with neuropathology (NIA ADC, Braak stage of neurofibrillary tangles, p = 3.9 × 10-6, and Consortium to Establish a Registry for Alzheimer's Disease score for neuritic plaques, p = 6.8 × 10-6) and in vivo markers of AD neurodegeneration (ADNI, volume loss within the entorhinal cortex, p = 6.3 × 10-6, and hippocampus, p = 7.9 × 10-5). Additional prospective validation of these results in non-US, non-white, and prospective community-based cohorts is necessary before clinical use. CONCLUSIONS: We have developed a PHS for quantifying individual differences in age-specific genetic risk for AD. Within the cohorts studied here, polygenic architecture plays an important role in modifying AD risk beyond APOE. With thorough validation, quantification of inherited genetic variation may prove useful for stratifying AD risk and as an enrichment strategy in therapeutic trials.


Assuntos
Doença de Alzheimer/epidemiologia , Apolipoproteínas E/genética , Avaliação Geriátrica/métodos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Apolipoproteínas E/metabolismo , Feminino , Genótipo , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia
7.
Circulation ; 131(23): 2061-2069, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25862742

RESUMO

BACKGROUND: Epidemiological findings suggest a relationship between Alzheimer disease (AD), inflammation, and dyslipidemia, although the nature of this relationship is not well understood. We investigated whether this phenotypic association arises from a shared genetic basis. METHODS AND RESULTS: Using summary statistics (P values and odds ratios) from genome-wide association studies of >200 000 individuals, we investigated overlap in single-nucleotide polymorphisms associated with clinically diagnosed AD and C-reactive protein (CRP), triglycerides, and high- and low-density lipoprotein levels. We found up to 50-fold enrichment of AD single-nucleotide polymorphisms for different levels of association with C-reactive protein, low-density lipoprotein, high-density lipoprotein, and triglyceride single-nucleotide polymorphisms using a false discovery rate threshold <0.05. By conditioning on polymorphisms associated with the 4 phenotypes, we identified 55 loci associated with increased AD risk. We then conducted a meta-analysis of these 55 variants across 4 independent AD cohorts (total: n=29 054 AD cases and 114 824 healthy controls) and discovered 2 genome-wide significant variants on chromosome 4 (rs13113697; closest gene, HS3ST1; odds ratio=1.07; 95% confidence interval=1.05-1.11; P=2.86×10(-8)) and chromosome 10 (rs7920721; closest gene, ECHDC3; odds ratio=1.07; 95% confidence interval=1.04-1.11; P=3.38×10(-8)). We also found that gene expression of HS3ST1 and ECHDC3 was altered in AD brains compared with control brains. CONCLUSIONS: We demonstrate genetic overlap between AD, C-reactive protein, and plasma lipids. By conditioning on the genetic association with the cardiovascular phenotypes, we identify novel AD susceptibility loci, including 2 genome-wide significant variants conferring increased risk for AD.


Assuntos
Doença de Alzheimer/genética , Proteína C-Reativa/metabolismo , Dislipidemias/genética , Estudo de Associação Genômica Ampla , Inflamação/genética , Lipídeos/sangue , Herança Multifatorial/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Proteína C-Reativa/genética , Dislipidemias/complicações , Feminino , Humanos , Inflamação/complicações , Lipídeos/genética , Masculino , Enzima Bifuncional do Peroxissomo/genética , Enzima Bifuncional do Peroxissomo/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Sulfotransferases/genética , Sulfotransferases/metabolismo
8.
Mult Scler ; 22(14): 1783-1793, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26920376

RESUMO

BACKGROUND: Epidemiological findings suggest a relationship between multiple sclerosis (MS) and cardiovascular disease (CVD) risk factors, although the nature of this relationship is not well understood. OBJECTIVE: We used genome-wide association study (GWAS) data to identify shared genetic factors (pleiotropy) between MS and CVD risk factors. METHODS: Using summary statistics from a large, recent GWAS (total n > 250,000 individuals), we investigated overlap in single nucleotide polymorphisms (SNPs) associated with MS and a number of CVD risk factors including triglycerides (TG), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, body mass index, waist-to-hip ratio, type 2 diabetes, systolic blood pressure, and C-reactive protein level. RESULTS AND CONCLUSION: Using conditional enrichment plots, we found 30-fold enrichment of MS SNPs for different levels of association with LDL and TG SNPs, with a corresponding reduction in conditional false discovery rate (FDR). We identified 133 pleiotropic loci outside the extended major histocompatibility complex with conditional FDR < 0.01, of which 65 are novel. These pleiotropic loci were located on 21 different chromosomes. Our findings point to overlapping pathobiology between clinically diagnosed MS and cardiovascular risk factors and identify novel common variants associated with increased MS risk.


Assuntos
Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla , Esclerose Múltipla/genética , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/fisiopatologia , Loci Gênicos , Pleiotropia Genética , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco
9.
Cell Rep ; 37(12): 110134, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936869

RESUMO

Neurons that signal the angular velocity of head movements (AHV cells) are important for processing visual and spatial information. However, it has been challenging to isolate the sensory modality that drives them and to map their cortical distribution. To address this, we develop a method that enables rotating awake, head-fixed mice under a two-photon microscope in a visual environment. Starting in layer 2/3 of the retrosplenial cortex, a key area for vision and navigation, we find that 10% of neurons report angular head velocity (AHV). Their tuning properties depend on vestibular input with a smaller contribution of vision at lower speeds. Mapping the spatial extent, we find AHV cells in all cortical areas that we explored, including motor, somatosensory, visual, and posterior parietal cortex. Notably, the vestibular and visual contributions to AHV are area dependent. Thus, many cortical circuits have access to AHV, enabling a diverse integration with sensorimotor and cognitive information.


Assuntos
Giro do Cíngulo/fisiologia , Movimentos da Cabeça , Microscopia/métodos , Percepção de Movimento , Neurônios/fisiologia , Percepção Espacial , Vestíbulo do Labirinto/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Lobo Parietal/fisiologia , Percepção Visual
11.
Front Neurosci ; 13: 220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930738

RESUMO

Background: Alzheimer's disease (AD) and bipolar disorder (BIP) are complex traits influenced by numerous common genetic variants, most of which remain to be detected. Clinical and epidemiological evidence suggest that AD and BIP are related. However, it is not established if this relation is of genetic origin. Here, we applied statistical methods based on the conditional false discovery rate (FDR) framework to detect genetic overlap between AD and BIP and utilized this overlap to increase the power to identify common genetic variants associated with either or both traits. Methods: We obtained genome wide association studies data from the International Genomics of Alzheimer's Project part 1 (17,008 AD cases and 37,154 controls) and the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases and 31,358 controls). We used conditional QQ-plots to assess overlap in common genetic variants between AD and BIP. We exploited the genetic overlap to re-rank test-statistics for AD and BIP and improve detection of genetic variants using the conditional FDR framework. Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP. Using conditional FDR, we identified one novel genomic locus associated with AD, and nine novel loci associated with BIP. Further, we identified two novel loci jointly associated with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional FDR = 0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476, conjunctional FDR = 0.022, opposite direction of effect). Conclusion: We found polygenic overlap between AD and BIP and identified novel loci for each trait and two jointly associated loci. Further studies should examine if the shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared and distinct features of AD and BIP.

13.
Sci Rep ; 9(1): 7013, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065058

RESUMO

Dementia with Lewy Bodies (DLB) is a common neurodegenerative disorder with poor prognosis and mainly unknown pathophysiology. Heritability estimates exceed 30% but few genetic risk variants have been identified. Here we investigated common genetic variants associated with DLB in a large European multisite sample. We performed a genome wide association study in Norwegian and European cohorts of 720 DLB cases and 6490 controls and included 19 top-associated single-nucleotide polymorphisms in an additional cohort of 108 DLB cases and 75545 controls from Iceland. Overall the study included 828 DLB cases and 82035 controls. Variants in the ASH1L/GBA (Chr1q22) and APOE ε4 (Chr19) loci were associated with DLB surpassing the genome-wide significance threshold (p < 5 × 10-8). One additional genetic locus previously linked to psychosis in Alzheimer's disease, ZFPM1 (Chr16q24.2), showed suggestive association with DLB at p-value < 1 × 10-6. We report two susceptibility loci for DLB at genome-wide significance, providing insight into etiological factors. These findings highlight the complex relationship between the genetic architecture of DLB and other neurodegenerative disorders.


Assuntos
Apolipoproteínas E/genética , Estudo de Associação Genômica Ampla/métodos , Glucosilceramidase/genética , Doença por Corpos de Lewy/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Europa (Continente) , Loci Gênicos , Predisposição Genética para Doença , Humanos , Islândia , Noruega , Proteínas Nucleares/genética , Fatores de Transcrição/genética
14.
Nat Genet ; 51(3): 404-413, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617256

RESUMO

Alzheimer's disease (AD) is highly heritable and recent studies have identified over 20 disease-associated genomic loci. Yet these only explain a small proportion of the genetic variance, indicating that undiscovered loci remain. Here, we performed a large genome-wide association study of clinically diagnosed AD and AD-by-proxy (71,880 cases, 383,378 controls). AD-by-proxy, based on parental diagnoses, showed strong genetic correlation with AD (rg = 0.81). Meta-analysis identified 29 risk loci, implicating 215 potential causative genes. Associated genes are strongly expressed in immune-related tissues and cell types (spleen, liver, and microglia). Gene-set analyses indicate biological mechanisms involved in lipid-related processes and degradation of amyloid precursor proteins. We show strong genetic correlations with multiple health-related outcomes, and Mendelian randomization results suggest a protective effect of cognitive ability on AD risk. These results are a step forward in identifying the genetic factors that contribute to AD risk and add novel insights into the neurobiology of AD.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Locos de Características Quantitativas/genética , Adulto , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Risco , Adulto Jovem
15.
PLoS One ; 13(9): e0202812, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30188921

RESUMO

The genome-wide association study of the Psychiatric Genomics Consortium identified over one hundred schizophrenia susceptibility loci. The number of non-coding variants discovered suggests that gene regulation could mediate the effect of these variants on disease. Expression quantitative trait loci (eQTLs) contribute to variation in levels of mRNA. Given the co-occurrence of schizophrenia and several traits not involving the central nervous system (CNS), we investigated the enrichment of schizophrenia associations among eQTLs for four non-CNS tissues: adipose tissue, epidermal tissue, lymphoblastoid cells and blood. Significant enrichment was seen in eQTLs of all tissues: adipose (ß = 0.18, p = 8.8 × 10-06), epidermal (ß = 0.12, p = 3.1 × 10-04), lymphoblastoid (ß = 0.19, p = 6.2 × 10-08) and blood (ß = 0.19, p = 6.4 × 10-06). For comparison, we looked for enrichment of association with traits of known relevance to one or more of these tissues (body mass index, height, rheumatoid arthritis, systolic blood pressure and type-II diabetes) and found that schizophrenia enrichment was of similar scale to that observed when studying diseases in the context of a more likely causal tissue. To further investigate tissue specificity, we looked for differential enrichment of eQTLs with relevant Roadmap affiliation (enhancers and promoters) and varying distance from the transcription start site. Neither factor significantly contributed to the enrichment, suggesting that this is equally distributed in tissue-specific and cross-tissue regulatory elements. Our analyses suggest that functional correlates of schizophrenia risk are prevalent in non-CNS tissues. This could be because of pleiotropy or the effectiveness of variants affecting expression in different contexts. This suggests the utility of large, single-tissue eQTL experiments to increase eQTL discovery power in the study of schizophrenia, in addition to smaller, multiple-tissue approaches. Our results conform to the notion that schizophrenia is a systemic disorder involving many tissues.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , Esquizofrenia/genética , Tecido Adiposo/química , Análise Química do Sangue , Mapeamento Cromossômico , Epiderme/química , Regulação da Expressão Gênica , Predisposição Genética para Doença , Variação Genética , Humanos , Especificidade de Órgãos , Fenótipo , Fatores de Risco
16.
Schizophr Bull ; 44(4): 854-864, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29136250

RESUMO

Schizophrenia (SCZ) is associated with differences in subcortical brain volumes and intracranial volume (ICV). However, little is known about the underlying etiology of these brain alterations. Here, we explored whether brain structure volumes and SCZ share genetic risk factors. Using conditional false discovery rate (FDR) analysis, we integrated genome-wide association study (GWAS) data on SCZ (n = 82315) and GWAS data on 7 subcortical brain volumes and ICV (n = 11840). By conditioning the FDR on overlapping associations, this statistical approach increases power to discover genetic loci. To assess the credibility of our approach, we studied the identified loci in larger GWAS samples on ICV (n = 26577) and hippocampal volume (n = 26814). We observed polygenic overlap between SCZ and volumes of hippocampus, putamen, and ICV. Based on conjunctional FDR < 0.05, we identified 2 loci shared between SCZ and ICV implicating genes FOXO3 (rs10457180) and ITIH4 (rs4687658), 2 loci shared between SCZ and hippocampal volume implicating SLC4A10 (rs4664442) and SPATS2L (rs1653290), and 2 loci shared between SCZ and volume of putamen implicating DCC (rs4632195) and DLG2 (rs11233632). The loci shared between SCZ and hippocampal volume or ICV had not reached significance in the primary GWAS on brain phenotypes. Proving our point of increased power, 2 loci did reach genome-wide significance with ICV (rs10457180) and hippocampal volume (rs4664442) in the larger GWAS. Three of the 6 identified loci are novel for SCZ. Altogether, the findings provide new insights into the relationship between SCZ and brain structure volumes, suggesting that their genetic architectures are not independent.


Assuntos
Encéfalo/patologia , Estudo de Associação Genômica Ampla/métodos , Hipocampo/patologia , Putamen/patologia , Esquizofrenia/genética , Esquizofrenia/patologia , Loci Gênicos , Pleiotropia Genética , Humanos , Imageamento por Ressonância Magnética
17.
Sci Rep ; 8(1): 12585, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135563

RESUMO

Higher cognitive functions are regarded as one of the main distinctive traits of humans. Evidence for the cognitive evolution of human beings is mainly based on fossil records of an expanding cranium and an increasing complexity of material culture artefacts. However, the molecular genetic factors involved in the evolution are still relatively unexplored. Here, we investigated whether genomic regions that underwent positive selection in humans after divergence from Neanderthals are enriched for genetic association with phenotypes related to cognitive functions. We used genome wide association data from a study of college completion (N = 111,114), one of educational attainment (N = 293,623) and two different studies of general cognitive ability (N = 269,867 and 53,949). We found nominally significant polygenic enrichment of associations with college completion (p = 0.025), educational attainment (p = 0.043) and general cognitive ability (p = 0.015 and 0.025, respectively), suggesting that variants influencing these phenotypes are more prevalent in evolutionarily salient regions. The enrichment remained significant after controlling for other known genetic enrichment factors, and for affiliation to genes highly expressed in the brain. These findings support the notion that phenotypes related to higher order cognitive skills typical of humans have a recent genetic component that originated after the separation of the human and Neanderthal lineages.


Assuntos
Evolução Biológica , Inteligência/genética , Encéfalo/metabolismo , Cognição/fisiologia , Escolaridade , Feminino , Marcadores Genéticos/genética , Genoma/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
18.
Sci Rep ; 8(1): 674, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330379

RESUMO

Epidemiology studies suggest associations between schizophrenia and cancer. However, the underlying genetic mechanisms are not well understood, and difficult to identify from epidemiological data. We investigated if there is a shared genetic architecture between schizophrenia and cancer, with the aim to identify specific overlapping genetic loci. First, we performed genome-wide enrichment analysis and second, we analyzed specific loci jointly associated with schizophrenia and cancer by the conjunction false discovery rate. We analyzed the largest genome-wide association studies of schizophrenia and lung, breast, prostate, ovary, and colon-rectum cancer including more than 220,000 subjects, and included genetic association with smoking behavior. Polygenic enrichment of associations with lung cancer was observed in schizophrenia, and weak enrichment for the remaining cancer sites. After excluding the major histocompatibility complex region, we identified three independent loci jointly associated with schizophrenia and lung cancer. The strongest association included nicotinic acetylcholine receptors and is an established pleiotropic locus shared between lung cancer and smoking. The two other loci were independent of genetic association with smoking. Functional analysis identified downstream pleiotropic effects on epigenetics and gene-expression in lung and brain tissue. These findings suggest that genetic factors may explain partly the observed epidemiological association of lung cancer and schizophrenia.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Epigênese Genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Herança Multifatorial , Receptores Nicotínicos/genética
19.
J Am Acad Child Adolesc Psychiatry ; 57(2): 86-95, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29413154

RESUMO

OBJECTIVE: Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable psychiatric condition. By exploiting the reported relationship between ADHD and educational attainment (EA), we aimed to improve discovery of ADHD-associated genetic variants and to investigate genetic overlap between these phenotypes. METHOD: A conditional/conjunctional false discovery rate (condFDR/conjFDR) method was applied to genome-wide association study (GWAS) data on ADHD (2,064 trios, 896 cases, and 2,455 controls) and EA (n=328,917) to identify ADHD-associated loci and loci overlapping between ADHD and EA. Identified single nucleotide polymorphisms (SNPs) were tested for association in an independent population-based study of ADHD symptoms (n=17,666). Genetic correlation between ADHD and EA was estimated using LD score regression and Pearson correlation. RESULTS: At levels of condFDR<0.01 and conjFDR<0.05, we identified 5 ADHD-associated loci, 3 of these being shared between ADHD and EA. None of these loci had been identified in the primary ADHD GWAS, demonstrating the increased power provided by the condFDR/conjFDR analysis. Leading SNPs for 4 of 5 identified regions are in introns of protein coding genes (KDM4A, MEF2C, PINK1, RUNX1T1), whereas the remaining one is an intergenic SNP on chromosome 2 at 2p24. Consistent direction of effects in the independent study of ADHD symptoms was shown for 4 of 5 identified loci. A polygenic overlap between ADHD and EA was supported by significant genetic correlation (rg=-0.403, p=7.90×10-8) and >10-fold mutual enrichment of SNPs associated with both traits. CONCLUSION: We identified 5 novel loci associated with ADHD and provided evidence for a shared genetic basis between ADHD and EA. These findings could aid understanding of the genetic risk architecture of ADHD and its relation to EA.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Criança , Escolaridade , Feminino , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
20.
Sci Rep ; 8(1): 18088, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591712

RESUMO

A large fraction of genetic risk factors for Alzheimer's Disease (AD) is still not identified, limiting the understanding of AD pathology and study of therapeutic targets. We conducted a genome-wide association study (GWAS) of AD cases and controls of European descent from the multi-center DemGene network across Norway and two independent European cohorts. In a two-stage process, we first performed a meta-analysis using GWAS results from 2,893 AD cases and 6,858 cognitively normal controls from Norway and 25,580 cases and 48,466 controls from the International Genomics of Alzheimer's Project (IGAP), denoted the discovery sample. Second, we selected the top hits (p < 1 × 10-6) from the discovery analysis for replication in an Icelandic cohort consisting of 5,341 cases and 110,008 controls. We identified a novel genomic region with genome-wide significant association with AD on chromosome 4 (combined analysis OR = 1.07, p = 2.48 x 10-8). This finding implicated HS3ST1, a gene expressed throughout the brain particularly in the cerebellar cortex. In addition, we identified IGHV1-68 in the discovery sample, previously not associated with AD. We also associated USP6NL/ECHDC3 and BZRAP1-AS1 to AD, confirming findings from a follow-up transethnic study. These new gene loci provide further evidence for AD as a polygenic disorder, and suggest new mechanistic pathways that warrant further investigation.


Assuntos
Doença de Alzheimer/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Locos de Características Quantitativas , Adolescente , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Noruega , Polimorfismo de Nucleotídeo Único , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA