Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(18): e111620, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37545364

RESUMO

Long noncoding RNAs (lncRNAs) influence the transcription of gene networks in many cell types, but their role in tumor-associated macrophages (TAMs) is still largely unknown. We found that the lncRNA ADPGK-AS1 was substantially upregulated in artificially induced M2-like human macrophages, macrophages exposed to lung cancer cells in vitro, and TAMs from human lung cancer tissue. ADPGK-AS1 is partly located within mitochondria and binds to the mitochondrial ribosomal protein MRPL35. Overexpression of ADPGK-AS1 in macrophages upregulates the tricarboxylic acid cycle and promotes mitochondrial fission, suggesting a phenotypic switch toward an M2-like, tumor-promoting cytokine release profile. Macrophage-specific knockdown of ADPGK-AS1 induces a metabolic and phenotypic switch (as judged by cytokine profile and production of reactive oxygen species) to a pro-inflammatory tumor-suppressive M1-like state, inhibiting lung tumor growth in vitro in tumor cell-macrophage cocultures, ex vivo in human tumor precision-cut lung slices, and in vivo in mice. Silencing ADPGK-AS1 in TAMs may thus offer a novel therapeutic strategy for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38305737

RESUMO

Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.


Assuntos
Células-Tronco Neurais , Fatores de Transcrição , Animais , Camundongos , Calpaína/genética , Calpaína/metabolismo , Diferenciação Celular , Proliferação de Células , Endopeptidases/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Peptídeo Hidrolases/metabolismo , Fatores de Transcrição/metabolismo
3.
Circ Res ; 133(10): 842-857, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37800327

RESUMO

BACKGROUND: Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury. METHODS: Native endothelial cells were isolated from young (20±3.4 years) and aged (80±2.3 years) individuals and subjected to molecular analyses to assess global transcriptional and metabolic changes. In vitro studies were conducted using primary human and murine endothelial cells. A murine aortic re-endothelialization model was used to examine endothelial cell regenerative capacity in vivo. RESULTS: RNA sequencing of native endothelial cells revealed that aging resulted in p53-mediated reprogramming to express senescence-associated genes and suppress glycolysis. Reduced glucose uptake and ATP contributed to attenuated assembly of the telomerase complex, which was required for endothelial cell proliferation. Enhanced p53 activity in aging was linked to its acetylation on K120 due to enhanced activity of the acetyltransferase MOZ (monocytic leukemic zinc finger). Mechanistically, p53 acetylation and translocation were, at least partially, attributed to the loss of the vasoprotective enzyme, CSE (cystathionine γ-lyase). CSE physically anchored p53 in the cytosol to prevent its nuclear translocation and CSE absence inhibited AKT (Protein kinase B)-mediated MOZ phosphorylation, which in turn increased MOZ activity and subsequently p53 acetylation. In mice, the endothelial cell-specific deletion of CSE activated p53, induced premature endothelial senescence, and arrested vascular repair after injury. In contrast, the adeno-associated virus 9-mediated re-expression of an active CSE mutant retained p53 in the cytosol, maintained endothelial glucose metabolism and proliferation, and prevented endothelial cell senescence. Adenoviral overexpression of CSE in native endothelial cells from aged individuals maintained low p53 activity and reactivated telomerase to revert endothelial cell senescence. CONCLUSIONS: Aging-associated impairment of vascular repair is partly determined by the vasoprotective enzyme CSE.


Assuntos
Sulfeto de Hidrogênio , Telomerase , Animais , Humanos , Camundongos , Senescência Celular , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Células Endoteliais/metabolismo , Sulfeto de Hidrogênio/metabolismo , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Nucleic Acids Res ; 51(2): 870-890, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36620874

RESUMO

Hypoxia induces massive changes in alternative splicing (AS) to adapt cells to the lack of oxygen. Here, we identify the splicing factor SRSF6 as a key factor in the AS response to hypoxia. The SRSF6 level is strongly reduced in acute hypoxia, which serves a dual purpose: it allows for exon skipping and triggers the dispersal of nuclear speckles. Our data suggest that cells use dispersal of nuclear speckles to reprogram their gene expression during hypoxic adaptation and that SRSF6 plays an important role in cohesion of nuclear speckles. Down-regulation of SRSF6 is achieved through inclusion of a poison cassette exon (PCE) promoted by SRSF4. Removing the PCE 3' splice site using CRISPR/Cas9 abolishes SRSF6 reduction in hypoxia. Aberrantly high SRSF6 levels in hypoxia attenuate hypoxia-mediated AS and impair dispersal of nuclear speckles. As a consequence, proliferation and genomic instability are increased, while the stress response is suppressed. The SRSF4-PCE-SRSF6 hypoxia axis is active in different cancer types, and high SRSF6 expression in hypoxic tumors correlates with a poor prognosis. We propose that the ultra-conserved PCE of SRSF6 acts as a tumor suppressor and that its inclusion in hypoxia is crucial to reduce SRSF6 levels. This may prevent tumor cells from entering the metastatic route of hypoxia adaptation.


Assuntos
Hipóxia Celular , Salpicos Nucleares , Splicing de RNA , Fatores de Processamento de Serina-Arginina , Humanos , Processamento Alternativo , Éxons/genética , Fosfoproteínas/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Células HeLa
5.
EMBO J ; 39(14): e103912, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32511785

RESUMO

Mitochondrial respiratory chain complexes I, III, and IV can associate into larger structures termed supercomplexes or respirasomes, thereby generating structural interdependences among the individual complexes yet to be understood. In patients, nonsense mutations in complex IV subunit genes cause severe encephalomyopathies randomly associated with pleiotropic complex I defects. Using complexome profiling and biochemical analyses, we have explored the structural rearrangements of the respiratory chain in human cell lines depleted of the catalytic complex IV subunit COX1 or COX2. In the absence of a functional complex IV holoenzyme, several supercomplex I+III2 species coexist, which differ in their content of COX subunits and COX7A2L/HIGD2A assembly factors. The incorporation of an atypical COX1-HIGD2A submodule attenuates supercomplex I+III2 turnover rate, indicating an unexpected molecular adaptation for supercomplexes stabilization that relies on the presence of COX1 independently of holo-complex IV formation. Our data set the basis for complex I structural dependence on complex IV, revealing the co-existence of alternative pathways for the biogenesis of "supercomplex-associated" versus individual complex IV, which could determine physiological adaptations under different stress and disease scenarios.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Linhagem Celular , Humanos
6.
J Cell Sci ; 135(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35611612

RESUMO

The 14q32 locus is an imprinted region in the human genome which contains multiple non-coding RNAs. We investigated the role of the long non-coding RNA maternally expressed gene 8 (MEG8) in endothelial function and its underlying mechanism. A 5-fold increase in MEG8 was observed with increased passage number in human umbilical vein endothelial cells (HUVECs), suggesting MEG8 is induced during aging. MEG8 knockdown resulted in a 1.8-fold increase in senescence, suggesting MEG8 might be protective during aging. The endothelial barrier was also impaired after MEG8 silencing. MEG8 knockdown resulted in reduced expression of microRNA (miRNA)-370 and -494 but not -127, -487b and -410. Overexpression of miRNA-370 or -494 partially rescued the MEG8-silencing-induced barrier loss. Mechanistically, MEG8 regulates expression of miRNA-370 and -494 at the mature miRNA level through interaction with the RNA-binding proteins cold-inducible RNA-binding protein (CIRBP) and hydroxyacyl-CoA dehydrogenase trifunctional multi-enzyme complex subunit ß (HADHB). Mature miRNA-370 and miRNA-494 were found to interact with CIRBP, whereas precursor miRNA-370 and miRNA-494 were found to interact with HADHB. Individual CIRBP and HADHB silencing resulted in downregulation of miRNA-370 and induction of miRNA-494. These results suggest MEG8 interacts with CIRBP and HADHB and contributes to miRNA processing at the post-transcriptional level.


Assuntos
MicroRNAs , RNA Longo não Codificante , Células Endoteliais , Humanos , MicroRNAs/genética , Interferência de RNA , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética
7.
Circ Res ; 130(1): 67-79, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34789007

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are generated by back splicing of mostly mRNAs and are gaining increasing attention as a novel class of regulatory RNAs that control various cellular functions. However, their physiological roles and functional conservation in vivo are rarely addressed, given the inherent challenges of their genetic inactivation. Here, we aimed to identify locus conserved circRNAs in mice and humans, which can be genetically deleted due to retained intronic elements not contained in the mRNA host gene to eventually address functional conservation. METHODS AND RESULTS: Combining published endothelial RNA-sequencing data sets with circRNAs of the circATLAS databank, we identified locus-conserved circRNA retaining intronic elements between mice and humans. CRISPR/Cas9 mediated genetic depletion of the top expressed circRNA cZfp292 resulted in an altered endothelial morphology and aberrant flow alignment in the aorta in vivo. Consistently, depletion of cZNF292 in endothelial cells in vitro abolished laminar flow-induced alterations in cell orientation, paxillin localization and focal adhesion organization. Mechanistically, we identified the protein SDOS (syndesmos) to specifically interact with cZNF292 in endothelial cells by RNA-affinity purification and subsequent mass spectrometry analysis. Silencing of SDOS or its protein binding partner Syndecan-4, or mutation of the SDOS-cZNF292 binding site, prevented laminar flow-induced cytoskeletal reorganization thereby recapitulating cZfp292 knockout phenotypes. CONCLUSIONS: Together, our data reveal a hitherto unknown role of cZNF292/cZfp292 in endothelial flow responses, which influences endothelial shape.


Assuntos
Proteínas de Ligação a DNA , Células Endoteliais , Endotélio Vascular , RNA Circular , Fatores de Transcrição , Animais , Humanos , Camundongos , Circulação Sanguínea , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Circular/genética , RNA Circular/metabolismo , Sindecana-4/metabolismo , Fatores de Transcrição/genética
8.
EMBO Rep ; 23(6): e54157, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527520

RESUMO

Vascular integrity is essential for organ homeostasis to prevent edema formation and infiltration of inflammatory cells. Long non-coding RNAs (lncRNAs) are important regulators of gene expression and often expressed in a cell type-specific manner. By screening for endothelial-enriched lncRNAs, we identified the undescribed lncRNA NTRAS to control endothelial cell functions. Silencing of NTRAS induces endothelial cell dysfunction in vitro and increases vascular permeability and lethality in mice. Biochemical analysis revealed that NTRAS, through its CA-dinucleotide repeat motif, sequesters the splicing regulator hnRNPL to control alternative splicing of tight junction protein 1 (TJP1; also named zona occludens 1, ZO-1) pre-mRNA. Deletion of the hnRNPL binding motif in mice (Ntras∆CA/∆CA ) significantly repressed TJP1 exon 20 usage, favoring expression of the TJP1α- isoform, which augments permeability of the endothelial monolayer. Ntras∆CA/∆CA mice further showed reduced retinal vessel growth and increased vascular permeability and myocarditis. In summary, this study demonstrates that NTRAS is an essential gatekeeper of vascular integrity.


Assuntos
RNA Longo não Codificante , Processamento Alternativo , Animais , Células Endoteliais/metabolismo , Camundongos , Permeabilidade , Isoformas de Proteínas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Junções Íntimas/metabolismo
9.
Mol Ther ; 31(6): 1775-1790, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37147804

RESUMO

Long non-coding RNAs (lncRNAs) orchestrate various biological processes and regulate the development of cardiovascular diseases. Their potential therapeutic benefit to tackle disease progression has recently been extensively explored. Our study investigates the role of lncRNA Nudix Hydrolase 6 (NUDT6) and its antisense target fibroblast growth factor 2 (FGF2) in two vascular pathologies: abdominal aortic aneurysms (AAA) and carotid artery disease. Using tissue samples from both diseases, we detected a substantial increase of NUDT6, whereas FGF2 was downregulated. Targeting Nudt6 in vivo with antisense oligonucleotides in three murine and one porcine animal model of carotid artery disease and AAA limited disease progression. Restoration of FGF2 upon Nudt6 knockdown improved vessel wall morphology and fibrous cap stability. Overexpression of NUDT6 in vitro impaired smooth muscle cell (SMC) migration, while limiting their proliferation and augmenting apoptosis. By employing RNA pulldown followed by mass spectrometry as well as RNA immunoprecipitation, we identified Cysteine and Glycine Rich Protein 1 (CSRP1) as another direct NUDT6 interaction partner, regulating cell motility and SMC differentiation. Overall, the present study identifies NUDT6 as a well-conserved antisense transcript of FGF2. NUDT6 silencing triggers SMC survival and migration and could serve as a novel RNA-based therapeutic strategy in vascular diseases.


Assuntos
Aneurisma da Aorta Abdominal , Doenças das Artérias Carótidas , RNA Longo não Codificante , Animais , Camundongos , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/terapia , Aneurisma da Aorta Abdominal/metabolismo , Apoptose/genética , Proliferação de Células/genética , Progressão da Doença , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Oligonucleotídeos Antissenso
10.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836590

RESUMO

Reactive oxygen species (ROS) can cause cellular damage and promote cancer development. Besides such harmful consequences of overproduction of ROS, all cells utilize ROS for signaling purposes and stabilization of cell homeostasis. In particular, the latter is supported by the NADPH oxidase 4 (Nox4) that constitutively produces low amounts of H2O2 By that mechanism, Nox4 forces differentiation of cells and prevents inflammation. We hypothesize a constitutive low level of H2O2 maintains basal activity of cellular surveillance systems and is unlikely to be cancerogenic. Utilizing two different murine models of cancerogen-induced solid tumors, we found that deletion of Nox4 promotes tumor formation and lowers recognition of DNA damage. Nox4 supports phosphorylation of H2AX (γH2AX), a prerequisite of DNA damage recognition, by retaining a sufficiently low abundance of the phosphatase PP2A in the nucleus. The underlying mechanism is continuous oxidation of AKT by Nox4. Interaction of oxidized AKT and PP2A captures the phosphatase in the cytosol. Absence of Nox4 facilitates nuclear PP2A translocation and dephosphorylation of γH2AX. Simultaneously AKT is left phosphorylated. Thus, in the absence of Nox4, DNA damage is not recognized and the increased activity of AKT supports proliferation. The combination of both events results in genomic instability and promotes tumor formation. By identifying Nox4 as a protective source of ROS in cancerogen-induced cancer, we provide a piece of knowledge for understanding the role of moderate production of ROS in preventing the initiation of malignancies.


Assuntos
Carcinógenos/toxicidade , NADPH Oxidase 4/genética , Neoplasias/induzido quimicamente , Animais , Núcleo Celular/metabolismo , Citosol/metabolismo , Dano ao DNA , Instabilidade Genômica , Camundongos , NADPH Oxidase 4/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Oxirredução , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais
11.
EMBO J ; 38(17): e100938, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31328803

RESUMO

Decreased nitric oxide (NO) bioavailability and oxidative stress are hallmarks of endothelial dysfunction and cardiovascular diseases. Although numerous proteins are S-nitrosated, whether and how changes in protein S-nitrosation influence endothelial function under pathophysiological conditions remains unknown. We report that active endothelial NO synthase (eNOS) interacts with and S-nitrosates pyruvate kinase M2 (PKM2), which reduces PKM2 activity. PKM2 inhibition increases substrate flux through the pentose phosphate pathway to generate reducing equivalents (NADPH and GSH) and protect against oxidative stress. In mice, the Tyr656 to Phe mutation renders eNOS insensitive to inactivation by oxidative stress and prevents the decrease in PKM2 S-nitrosation and reducing equivalents, thereby delaying cardiovascular disease development. These findings highlight a novel mechanism linking NO bioavailability to antioxidant responses in endothelial cells through S-nitrosation and inhibition of PKM2.


Assuntos
Substituição de Aminoácidos , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Piruvato Quinase/metabolismo , Animais , Células Cultivadas , Células Endoteliais , Homeostase , Humanos , Masculino , Camundongos , Óxido Nítrico Sintase Tipo III/genética , Oxirredução , Via de Pentose Fosfato , Ligação Proteica
12.
Am J Hum Genet ; 106(1): 92-101, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866046

RESUMO

Leigh syndrome is one of the most common neurological phenotypes observed in pediatric mitochondrial disease presentations. It is characterized by symmetrical lesions found on neuroimaging in the basal ganglia, thalamus, and brainstem and by a loss of motor skills and delayed developmental milestones. Genetic diagnosis of Leigh syndrome is complicated on account of the vast genetic heterogeneity with >75 candidate disease-associated genes having been reported to date. Candidate genes are still emerging, being identified when "omics" tools (genomics, proteomics, and transcriptomics) are applied to manipulated cell lines and cohorts of clinically characterized individuals who lack a genetic diagnosis. NDUFAF8 is one such protein; it has been found to interact with the well-characterized complex I (CI) assembly factor NDUFAF5 in a large-scale protein-protein interaction screen. Diagnostic next-generation sequencing has identified three unrelated pediatric subjects, each with a clinical diagnosis of Leigh syndrome, who harbor bi-allelic pathogenic variants in NDUFAF8. These variants include a recurrent splicing variant that was initially overlooked due to its deep-intronic location. Subject fibroblasts were found to express a complex I deficiency, and lentiviral transduction with wild-type NDUFAF8-cDNA ameliorated both the assembly defect and the biochemical deficiency. Complexome profiling of subject fibroblasts demonstrated a complex I assembly defect, and the stalled assembly intermediates corroborate the role of NDUFAF8 in early complex I assembly. This report serves to expand the genetic heterogeneity associated with Leigh syndrome and to validate the clinical utility of orphan protein characterization. We also highlight the importance of evaluating intronic sequence when a single, definitively pathogenic variant is identified during diagnostic testing.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Fibroblastos/patologia , Doença de Leigh/etiologia , Doenças Mitocondriais/etiologia , Proteínas Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Alelos , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Doença de Leigh/patologia , Masculino , Doenças Mitocondriais/patologia , Linhagem , Fenótipo
13.
Basic Res Cardiol ; 118(1): 5, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700983

RESUMO

Long non-coding RNAs (lncRNAs) can act as regulatory RNAs which, by altering the expression of target genes, impact on the cellular phenotype and cardiovascular disease development. Endothelial lncRNAs and their vascular functions are largely undefined. Deep RNA-Seq and FANTOM5 CAGE analysis revealed the lncRNA LINC00607 to be highly enriched in human endothelial cells. LINC00607 was induced in response to hypoxia, arteriosclerosis regression in non-human primates, post-atherosclerotic cultured endothelial cells from patients and also in response to propranolol used to induce regression of human arteriovenous malformations. siRNA knockdown or CRISPR/Cas9 knockout of LINC00607 attenuated VEGF-A-induced angiogenic sprouting. LINC00607 knockout in endothelial cells also integrated less into newly formed vascular networks in an in vivo assay in SCID mice. Overexpression of LINC00607 in CRISPR knockout cells restored normal endothelial function. RNA- and ATAC-Seq after LINC00607 knockout revealed changes in the transcription of endothelial gene sets linked to the endothelial phenotype and in chromatin accessibility around ERG-binding sites. Mechanistically, LINC00607 interacted with the SWI/SNF chromatin remodeling protein BRG1. CRISPR/Cas9-mediated knockout of BRG1 in HUVEC followed by CUT&RUN revealed that BRG1 is required to secure a stable chromatin state, mainly on ERG-binding sites. In conclusion, LINC00607 is an endothelial-enriched lncRNA that maintains ERG target gene transcription by interacting with the chromatin remodeler BRG1 to ultimately mediate angiogenesis.


Assuntos
RNA Longo não Codificante , Animais , Humanos , Camundongos , Cromatina , DNA Helicases/genética , DNA Helicases/metabolismo , Células Endoteliais/metabolismo , Camundongos SCID , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , Neovascularização Fisiológica
14.
Mol Genet Metab ; 140(3): 107675, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37572574

RESUMO

Recessive variants in NDUFAF3 are a known cause of complex I (CI)-related mitochondrial disorders (MDs). The seven patients reported to date exhibited severe neurologic symptoms and lactic acidosis, followed by a fatal course and death during infancy in most cases. We present a 10-year-old patient with a neurodevelopmental disorder, progressive exercise intolerance, dystonia, basal ganglia abnormalities, and elevated lactate concentration in blood. Trio-exome sequencing revealed compound-heterozygosity for a pathogenic splice-site and a likely pathogenic missense variant in NDUFAF3. Spectrophotometric analysis of fibroblast-derived mitochondria demonstrated a relatively mild reduction of CI activity. Complexome analyses revealed severely reduced NDUFAF3 as well as CI in patient fibroblasts. Accumulation of early sub-assemblies of the membrane arm of CI associated with mitochondrial complex I intermediate assembly (MCIA) complex was observed. The most striking additional findings were both the unusual occurrence of free monomeric CI holding MCIA and other assembly factors. Here we discuss our patient in context of genotype, phenotype and metabolite data from previously reported NDUFAF3 cases. With the atypical presentation of our patient, we provide further insight into the phenotypic spectrum of NDUFAF3-related MDs. Complexome analysis in our patient confirms the previously defined role of NDUFAF3 within CI biogenesis, yet adds new aspects regarding the correct timing of both the association of soluble and membrane arm modules and CI-maturation as well as respiratory supercomplex formation.


Assuntos
Acidose Láctica , Doenças Mitocondriais , Humanos , Criança , Doenças Mitocondriais/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Sequenciamento do Exoma , Acidose Láctica/genética , Fenótipo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
15.
EMBO Rep ; 22(10): e51991, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351705

RESUMO

Peroxisomal biogenesis disorders (PBDs) are genetic disorders of peroxisome biogenesis and metabolism that are characterized by profound developmental and neurological phenotypes. The most severe class of PBDs-Zellweger spectrum disorder (ZSD)-is caused by mutations in peroxin genes that result in both non-functional peroxisomes and mitochondrial dysfunction. It is unclear, however, how defective peroxisomes contribute to mitochondrial impairment. In order to understand the molecular basis of this inter-organellar relationship, we investigated the fate of peroxisomal mRNAs and proteins in ZSD model systems. We found that peroxins were still expressed and a subset of them accumulated on the mitochondrial membrane, which resulted in gross mitochondrial abnormalities and impaired mitochondrial metabolic function. We showed that overexpression of ATAD1, a mitochondrial quality control factor, was sufficient to rescue several aspects of mitochondrial function in human ZSD fibroblasts. Together, these data suggest that aberrant peroxisomal protein localization is necessary and sufficient for the devastating mitochondrial morphological and metabolic phenotypes in ZSDs.


Assuntos
Transtornos Peroxissômicos , Síndrome de Zellweger , Humanos , Mitocôndrias/genética , Peroxinas/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Peroxissomos/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo
16.
J Immunol ; 206(8): 1890-1900, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33731338

RESUMO

Caseinolytic mitochondrial matrix peptidase proteolytic subunit (CLPP) is a serine protease that degrades damaged or misfolded mitochondrial proteins. CLPP-null mice exhibit growth retardation, deafness, and sterility, resembling human Perrault syndrome, but also display immune system alterations. However, the molecular mechanisms and signaling pathways underlying immunological changes in CLPP-null mice remain unclear. In this study, we report the steady-state activation of type I IFN signaling and antiviral gene expression in CLPP-deficient cells and tissues, resulting in marked resistance to RNA and DNA virus infection. Depletion of the cyclic GMP-AMP (cGAS)-stimulator of IFN genes (STING) DNA sensing pathway reduces steady-state IFN-I signaling and abrogates the broad antiviral phenotype of CLPP-null cells. Moreover, we report that CLPP deficiency leads to mitochondrial DNA (mtDNA) instability and packaging alterations. Pharmacological and genetic approaches to deplete mtDNA or inhibit cytosolic release markedly reduce antiviral gene expression, implicating mtDNA stress as the driver of IFN-I signaling in CLPP-null mice. Our work places the cGAS-STING-IFN-I innate immune pathway downstream of CLPP and may have implications for understanding Perrault syndrome and other human diseases involving CLPP dysregulation.


Assuntos
Interferon beta , Nucleotidiltransferases , Animais , DNA Mitocondrial/genética , Endopeptidase Clp/genética , Humanos , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Nucleotídeos Cíclicos , Nucleotidiltransferases/metabolismo , Peptídeo Hidrolases
17.
Proc Natl Acad Sci U S A ; 117(11): 5923-5930, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123095

RESUMO

Arachidonic acid epoxides generated by cytochrome P450 (CYP) enzymes have been linked to increased tumor growth and metastasis, largely on the basis of overexpression studies and the application of exogenous epoxides. Here we studied tumor growth and metastasis in Cyp2c44-/- mice crossed onto the polyoma middle T oncogene (PyMT) background. The resulting PyMT2c44 mice developed more primary tumors earlier than PyMT mice, with increased lymph and lung metastasis. Primary tumors from Cyp2c44-deficient mice contained higher numbers of tumor-associated macrophages, as well as more lymphatic endothelial cells than tumors from PyMT mice. While epoxide and diol levels were comparable in tumors from both genotypes, prostaglandin (PG) levels were higher in the PyMTΔ2c44 tumors. This could be accounted for by the finding that Cyp2c44 metabolized the PG precursor, PGH2 to 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT), thus effectively reducing levels of effector PGs (including PGE2). Next, proteomic analyses revealed an up-regulation of WD repeating domain FYVE1 (WDFY1) in tumors from PyMTΔ2c44 mice, a phenomenon that was reproduced in Cyp2c44-deficient macrophages as well as by PGE2 Mechanistically, WDFY1 was involved in Toll-like receptor signaling, and its down-regulation in human monocytes attenuated the LPS-induced phosphorylation of IFN regulatory factor 3 and nuclear factor-κB. Taken together, our results indicate that Cyp2c44 protects against tumor growth and metastasis by preventing the synthesis of PGE2 The latter eicosanoid influenced macrophages at least in part by enhancing Toll-like receptor signaling via the up-regulation of WDFY1.


Assuntos
Neoplasias da Mama/metabolismo , Família 2 do Citocromo P450/metabolismo , Linfangiogênese/fisiologia , Prostaglandinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Família 2 do Citocromo P450/genética , Modelos Animais de Doenças , Células Endoteliais/patologia , Ácidos Graxos Insaturados/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Linfangiogênese/genética , Macrófagos , Camundongos , Camundongos Knockout , Monócitos , Processos Neoplásicos , Proteômica , Transdução de Sinais , Receptores Toll-Like , Regulação para Cima
18.
J Biol Chem ; 297(4): 101204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34543622

RESUMO

Impairments in mitochondrial energy metabolism have been implicated in human genetic diseases associated with mitochondrial and nuclear DNA mutations, neurodegenerative and cardiovascular disorders, diabetes, and aging. Alteration in mitochondrial complex I structure and activity has been shown to play a key role in Parkinson's disease and ischemia/reperfusion tissue injury, but significant difficulty remains in assessing the content of this enzyme complex in a given sample. The present study introduces a new method utilizing native polyacrylamide gel electrophoresis in combination with flavin fluorescence scanning to measure the absolute content of complex I, as well as α-ketoglutarate dehydrogenase complex, in any preparation. We show that complex I content is 19 ± 1 pmol/mg of protein in the brain mitochondria, whereas varies up to 10-fold in different mouse tissues. Together with the measurements of NADH-dependent specific activity, our method also allows accurate determination of complex I catalytic turnover, which was calculated as 104 min-1 for NADH:ubiquinone reductase in mouse brain mitochondrial preparations. α-ketoglutarate dehydrogenase complex content was determined to be 65 ± 5 and 123 ± 9 pmol/mg protein for mouse brain and bovine heart mitochondria, respectively. Our approach can also be extended to cultured cells, and we demonstrated that about 90 × 103 complex I molecules are present in a single human embryonic kidney 293 cell. The ability to determine complex I content should provide a valuable tool to investigate the enzyme status in samples after in vivo treatment in mutant organisms, cells in culture, or human biopsies.


Assuntos
Encéfalo/enzimologia , Complexo I de Transporte de Elétrons , Mitocôndrias/enzimologia , Animais , Complexo I de Transporte de Elétrons/análise , Complexo I de Transporte de Elétrons/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Complexo Cetoglutarato Desidrogenase/análise , Complexo Cetoglutarato Desidrogenase/metabolismo , Camundongos
19.
Circulation ; 143(9): 935-948, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33307764

RESUMO

BACKGROUND: In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS: Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and ß3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS: Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on ß3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the ß leg. ß3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between ß3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect ß3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS: Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.


Assuntos
Cadeias beta de Integrinas/química , Compostos de Sulfidrila/química , Animais , Cromatografia Líquida de Alta Pressão , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cisteína/química , Dissulfetos/análise , Dissulfetos/química , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Sulfeto de Hidrogênio/farmacologia , Cadeias beta de Integrinas/metabolismo , Mecanotransdução Celular , Camundongos , Resistência ao Cisalhamento , Espectrometria de Massas em Tandem , Vasodilatação/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
20.
Neuropathol Appl Neurobiol ; 48(1): e12750, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34312900

RESUMO

AIMS: We investigated N471D WASH complex subunit strumpellin (Washc5) knock-in and Washc5 knock-out mice as models for hereditary spastic paraplegia type 8 (SPG8). METHODS: We generated heterozygous and homozygous N471D Washc5 knock-in mice and subjected them to a comprehensive clinical, morphological and laboratory parameter screen, and gait analyses. Brain tissue was used for proteomic analysis. Furthermore, we generated heterozygous Washc5 knock-out mice. WASH complex subunit strumpellin expression was determined by qPCR and immunoblotting. RESULTS: Homozygous N471D Washc5 knock-in mice showed mild dilated cardiomyopathy, decreased acoustic startle reactivity, thinner eye lenses, increased alkaline phosphatase and potassium levels and increased white blood cell counts. Gait analyses revealed multiple aberrations indicative of locomotor instability. Similarly, the clinical chemistry, haematology and gait parameters of heterozygous mice also deviated from the values expected for healthy animals, albeit to a lesser extent. Proteomic analysis of brain tissue depicted consistent upregulation of BPTF and downregulation of KLHL11 in heterozygous and homozygous knock-in mice. WASHC5-related protein interaction partners and complexes showed no change in abundancies. Heterozygous Washc5 knock-out mice showing normal WASHC5 levels could not be bred to homozygosity. CONCLUSIONS: While biallelic ablation of Washc5 was prenatally lethal, expression of N471D mutated WASHC5 led to several mild clinical and laboratory parameter abnormalities, but not to a typical SPG8 phenotype. The consistent upregulation of BPTF and downregulation of KLHL11 suggest mechanistic links between the expression of N471D mutated WASHC5 and the roles of both proteins in neurodegeneration and protein quality control, respectively.


Assuntos
Proteômica , Paraplegia Espástica Hereditária , Animais , Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mutação , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA