Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 35(10): 1077-97, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-26951610

RESUMO

FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons.


Assuntos
Neurônios Motores/metabolismo , Proteína FUS de Ligação a RNA/genética , Animais , Encéfalo/metabolismo , Citoplasma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Proteína FUS de Ligação a RNA/metabolismo , Medula Espinal/metabolismo
2.
Neurobiol Dis ; 97(Pt A): 36-45, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27818323

RESUMO

BACKGROUND: Monogenetic forms of amyotrophic lateral sclerosis (ALS) offer an opportunity for unraveling the molecular mechanisms underlying this devastating neurodegenerative disorder. In order to identify a link between ALS-related metabolic changes and neurodegeneration, we investigated whether ALS-causing mutations interfere with the peripheral and brain-specific expression and signaling of the metabolic master regulator PGC (PPAR gamma coactivator)-1α (PGC-1α). METHODS: We analyzed the expression of PGC-1α isoforms and target genes in two mouse models of familial ALS and validated the stimulated PGC-1α signaling in primary adipocytes and neurons of these animal models and in iPS derived motoneurons of two ALS patients harboring two different frame-shift FUS/TLS mutations. RESULTS: Mutations in SOD1 and FUS/TLS decrease Ppargc1a levels in the CNS whereas in muscle and brown adipose tissue Ppargc1a mRNA levels were increased. Probing the underlying mechanism in neurons, we identified the monocarboxylate lactate as a previously unrecognized potent and selective inducer of the CNS-specific PGC-1α isoforms. Lactate also induced genes like brain-derived neurotrophic factor, transcription factor EB and superoxide dismutase 3 that are down-regulated in PGC-1α deficient neurons. The lactate-induced CNS-specific PGC-1α signaling system is completely silenced in motoneurons derived from induced pluripotent stem cells obtained from two ALS patients harboring two different frame-shift FUS/TLS mutations. CONCLUSION: ALS mutations increase the canonical PGC-1α system in the periphery while inhibiting the CNS-specific isoforms. We identify lactate as an inducer of the neuronal PGC-1α system directly linking brain metabolism and neuroprotection. Changes in the PGC-1α system might be involved in the ALS accompanied metabolic changes and in neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética , Tecido Adiposo Marrom/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Mutação , Neurônios/metabolismo , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Ratos , Superóxido Dismutase-1/metabolismo
3.
Brain ; 139(Pt 4): 1106-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26984187

RESUMO

Amyotrophic lateral sclerosis, the most common adult-onset motor neuron disease, leads to death within 3 to 5 years after onset. Beyond progressive motor impairment, patients with amyotrophic lateral sclerosis suffer from major defects in energy metabolism, such as weight loss, which are well correlated with survival. Indeed, nutritional intervention targeting weight loss might improve survival of patients. However, the neural mechanisms underlying metabolic impairment in patients with amyotrophic lateral sclerosis remain elusive, in particular due to the lack of longitudinal studies. Here we took advantage of samples collected during the clinical trial of pioglitazone (GERP-ALS), and characterized longitudinally energy metabolism of patients with amyotrophic lateral sclerosis in response to pioglitazone, a drug with well-characterized metabolic effects. As expected, pioglitazone decreased glycaemia, decreased liver enzymes and increased circulating adiponectin in patients with amyotrophic lateral sclerosis, showing its efficacy in the periphery. However, pioglitazone did not increase body weight of patients with amyotrophic lateral sclerosis independently of bulbar involvement. As pioglitazone increases body weight through a direct inhibition of the hypothalamic melanocortin system, we studied hypothalamic neurons producing proopiomelanocortin (POMC) and the endogenous melanocortin inhibitor agouti-related peptide (AGRP), in mice expressing amyotrophic lateral sclerosis-linked mutant SOD1(G86R). We observed lower Pomc but higher Agrp mRNA levels in the hypothalamus of presymptomatic SOD1(G86R) mice. Consistently, numbers of POMC-positive neurons were decreased, whereas AGRP fibre density was elevated in the hypothalamic arcuate nucleus of SOD1(G86R) mice. Consistent with a defect in the hypothalamic melanocortin system, food intake after short term fasting was increased in SOD1(G86R) mice. Importantly, these findings were replicated in two other amyotrophic lateral sclerosis mouse models based on TDP-43 (Tardbp) and FUS mutations. Finally, we demonstrate that the melanocortin defect is primarily caused by serotonin loss in mutant SOD1(G86R) mice. Altogether, the current study combined clinical evidence and experimental studies in rodents to provide a mechanistic explanation for abnormalities in food intake and weight control observed in patients with amyotrophic lateral sclerosis. Importantly, these results also show that amyotrophic lateral sclerosis progression impairs responsiveness to classical drugs leading to weight gain. This has important implications for pharmacological management of weight loss in amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Hipotálamo/metabolismo , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/fisiologia , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Animais , Feminino , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pioglitazona , Pró-Opiomelanocortina/genética , Riluzol/farmacologia , Riluzol/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico
4.
Ann Neurol ; 77(1): 15-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25363075

RESUMO

OBJECTIVE: Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson disease (PD), with accumulating evidence that prefibrillar oligomers and protofibrils are the pathogenic species in PD and related synucleinopathies. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a key regulator of mitochondrial biogenesis and cellular energy metabolism, has recently been associated with the pathophysiology of PD. Despite extensive effort on studying the function of PGC-1α in mitochondria, no studies have addressed whether PGC-1α directly influences oligomerization of α-syn or whether α-syn oligomers impact PGC-1α expression. MATERIALS AND METHODS: We tested whether pharmacological or genetic activation of PGC-1α or PGC-11α knockdown could modulate the oligomerization of α-syn in vitro by using an α-syn -fragment complementation assay. RESULTS: In this study, we found that both PGC-1α reference gene (RG-PGC-1α) and the central nervous system (CNS)-specific PGC-1α (CNS-PGC-1α) are downregulated in human PD brain, in A30P α-syn transgenic animals, and in a cell culture model for α-syn oligomerization. Importantly, downregulation of both RG-PGC-1α and CNS-PGC-1α in cell culture or neurons from RG-PGC-1α-deficient mice leads to a strong induction of α-syn oligomerization and toxicity. In contrast, pharmacological activation or genetic overexpression of RG-PGC-1α reduced α-syn oligomerization and rescued α-syn-mediated toxicity. INTERPRETATION: Based on our results, we propose that PGC-1α downregulation and α-syn oligomerization form a vicious circle, thereby influencing and/or potentiating each other. Our data indicate that restoration of PGC-1α is a promising approach for development of effective drugs for the treatment of PD and related synucleinopathies.


Assuntos
Regulação da Expressão Gênica/genética , PPAR gama/genética , PPAR gama/metabolismo , Substância Negra/metabolismo , Fatores de Transcrição/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Humanos , Macrolídeos/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Doença de Parkinson/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Resveratrol , Estilbenos/farmacologia , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição/genética , alfa-Sinucleína/genética
5.
Acta Neuropathol ; 131(3): 379-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26576561

RESUMO

Extracellular alpha-synuclein (αsyn) oligomers, associated to exosomes or free, play an important role in the pathogenesis of Parkinson's disease (PD). Increasing evidence suggests that these extracellular moieties activate microglia leading to enhanced neuronal damage. Despite extensive efforts on studying neuroinflammation in PD, little is known about the impact of age on microglial activation and phagocytosis, especially of extracellular αsyn oligomers. Here, we show that microglia isolated from adult mice, in contrast to microglia from young mice, display phagocytosis deficits of free and exosome-associated αsyn oligomers combined with enhanced TNFα secretion. In addition, we describe a dysregulation of monocyte subpopulations with age in mice and humans. Accordingly, human monocytes from elderly donors also show reduced phagocytic activity of extracellular αsyn. These findings suggest that these age-related alterations may contribute to an increased susceptibility to pathogens or abnormally folded proteins with age in neurodegenerative diseases.


Assuntos
Envelhecimento/metabolismo , Microglia/metabolismo , Monócitos/metabolismo , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Exossomos/metabolismo , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Camundongos , Doença de Parkinson/metabolismo , Fagocitose/fisiologia
6.
Acta Neuropathol ; 132(3): 391-411, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26910103

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease affecting primarily the upper and lower motor neurons. A common feature of all ALS cases is a well-characterized neuroinflammatory reaction within the central nervous system (CNS). However, much less is known about the role of the peripheral immune system and its interplay with CNS resident immune cells in motor neuron degeneration. Here, we characterized peripheral monocytes in both temporal and spatial dimensions of ALS pathogenesis. We found the circulating monocytes to be deregulated in ALS regarding subtype constitution, function and gene expression. Moreover, we show that CNS infiltration of peripheral monocytes correlates with improved motor neuron survival in a genetic ALS mouse model. Furthermore, application of human immunoglobulins or fusion proteins containing only the human Fc, but not the Fab antibody fragment, increased CNS invasion of peripheral monocytes and delayed the disease onset. Our results underline the importance of peripheral monocytes in ALS pathogenesis and are in agreement with a protective role of monocytes in the early phase of the disease. The possibility to boost this beneficial function of peripheral monocytes by application of human immunoglobulins should be evaluated in clinical trials.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Sistema Nervoso Central/metabolismo , Leucócitos Mononucleares/metabolismo , Monócitos/metabolismo , Sistema Fagocitário Mononuclear/metabolismo , Neurônios Motores/patologia , Medula Espinal/patologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Medula Espinal/metabolismo
7.
Acta Neuropathol ; 131(3): 465-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26744351

RESUMO

Microglia are the resident mononuclear phagocytes of the central nervous system and have been implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). During neurodegeneration, microglial activation is accompanied by infiltration of circulating monocytes, leading to production of multiple inflammatory mediators in the spinal cord. Degenerative alterations in mononuclear phagocytes are commonly observed during neurodegenerative diseases, yet little is known concerning the mechanisms leading to their degeneration, or the consequences on disease progression. Here we observed that the serotonin 2B receptor (5-HT2B), a serotonin receptor expressed in microglia, is upregulated in the spinal cord of three different transgenic mouse models of ALS. In mutant SOD1 mice, this upregulation was restricted to cells positive for CD11b, a marker of mononuclear phagocytes. Ablation of 5-HT2B receptor in transgenic ALS mice expressing mutant SOD1 resulted in increased degeneration of mononuclear phagocytes, as evidenced by fragmentation of Iba1-positive cellular processes. This was accompanied by decreased expression of key neuroinflammatory genes but also loss of expression of homeostatic microglial genes. Importantly, the dramatic effect of 5-HT2B receptor ablation on mononuclear phagocytes was associated with acceleration of disease progression. To determine the translational relevance of these results, we studied polymorphisms in the human HTR2B gene, which encodes the 5-HT2B receptor, in a large cohort of ALS patients. In this cohort, the C allele of SNP rs10199752 in HTR2B was associated with longer survival. Moreover, patients carrying one copy of the C allele of SNP rs10199752 showed increased 5-HT2B mRNA in spinal cord and displayed less pronounced degeneration of Iba1 positive cells than patients carrying two copies of the more common A allele. Thus, the 5-HT2B receptor limits degeneration of spinal cord mononuclear phagocytes, most likely microglia, and slows disease progression in ALS. Targeting this receptor might be therapeutically useful.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Sistema Fagocitário Mononuclear/patologia , Receptor 5-HT2B de Serotonina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/patologia , Sistema Fagocitário Mononuclear/metabolismo , Neurônios Motores/patologia , Reação em Cadeia da Polimerase em Tempo Real , Medula Espinal/patologia
8.
Hum Mol Genet ; 22(17): 3477-84, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23669350

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating, adult-onset neurodegenerative disorder of the upper and lower motor systems. It leads to paresis, muscle wasting and inevitably to death, typically within 3-5 years. However, disease onset and survival vary considerably ranging in extreme cases from a few months to several decades. The genetic and environmental factors underlying this variability are of great interest as potential therapeutic targets. In ALS, men are affected more often and have an earlier age of onset than women. This gender difference is recapitulated in transgenic rodent models, but no underlying mechanism has been elucidated. Here we report that SNPs in the brain-specific promoter region of the transcriptional co-activator PGC-1α, a master regulator of metabolism, modulate age of onset and survival in two large and independent ALS populations and this occurs in a strictly male-specific manner. In complementary animal studies, we show that deficiency of full-length (FL) Pgc-1α leads to a significantly earlier age of onset and a borderline shortened survival in male, but not in female ALS-transgenic mice. In the animal model, FL Pgc-1α-loss is associated with reduced mRNA levels of the trophic factor Vegf-A in males, but not in females. In summary, we indentify PGC-1α as a novel and clinically relevant disease modifier of human and experimental ALS and report a sex-dependent effect of PGC-1α in this neurodegenerative disorder.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto , Idade de Início , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Polimorfismo de Nucleotídeo Único , Caracteres Sexuais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Hum Mol Genet ; 21(15): 3461-73, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22589246

RESUMO

PGC-1α has been implicated in the pathogenesis of neurodegenerative disorders. Several single-nucleotide polymorphisms (SNPs) located in two separate haplotype blocks of PPARGC1A have shown associations with Huntington's disease (HD) and Parkinson's disease, but causative SNPs have not been identified. One SNP (rs7665116) was located in a highly conserved 233 bp region of intron 2. To determine whether rs7665116 is located in an alternative exon, we performed 5'-RLM-RACE from exon 3 and discovered multiple new transcripts that initiated from a common novel promoter located 587 kb upstream of exon 2, but did not contain the conserved region harboring rs7665116. Using real-time polymerase chain reaction, RNase protection assays and northern blotting, we show that the majority of these transcripts are brain specific and are at least equally or perhaps more abundant than the reference sequence PPARGC1A transcripts in whole brain. Two main transcripts containing independent methionine start codons encode full-length brain-specific PGC-1α proteins that differ only at their N-termini (NTs) from PGC-1α, encoded by the reference sequence. Additional truncated isoforms containing these NTs that are similar to NT-PGC-1α exist. Other transcripts may encode potential dominant negative forms, as they are predicted to lack the second LXXLL motif that serves as an interaction site for several nuclear receptors. Furthermore, we show that the new promoter is active in neuronal cell lines and describe haplotypes encompassing this region that are associated with HD age of onset. The discovery of such a large PPARGC1A genomic locus and multiple isoforms in brain warrants further functional studies and may provide new tissue-specific targets for treating neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Genoma Humano , Proteínas de Choque Térmico/genética , Doença de Huntington/epidemiologia , Doença de Huntington/genética , Fatores de Transcrição/genética , Idade de Início , Éxons , Genômica , Proteínas de Choque Térmico/metabolismo , Humanos , Íntrons , Dados de Sequência Molecular , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo
10.
J Gene Med ; 14(7): 468-81, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22700462

RESUMO

BACKGROUND: Neuronal degeneration, in particular in the striatum, and the formation of nuclear and cytoplasmic inclusions are characteristics of Huntington's disease (HD) as a result of the expansion of a polyglutamine tract located close to the N-terminus of huntingtin (htt). Because of the large (10-kb) size of the htt cDNA, expression of full-length htt in primary neurons has proved difficult in the past. METHODS: We generated a new chronic in vitro model that is based on high-capacity adenovirus vector-mediated transduction of primary murine striatal and cortical neurons. Because the vector has a large capacity for transport of foreign DNA, it was possible to quantitatively express in these primary cells normal and mutant full-length htt (designed as fusion proteins with enhanced green fluorescent protein) in addition to its truncated versions. Pathological changes caused by mutant htt were characterized. RESULTS: The model mimicked several features observed in HD patients: prominent nuclear inclusions in cortical but not in striatal neurons, preferential neuronal degeneration of striatal neurons and neurofilament fragmentation in this cell type. Compared with expressed truncated mutant htt, the expression of full-length mutant htt in neurons resulted in a much slower appearance of pathological changes. Different from cortical neurons, the vast majority of nuclei in striatal cells contained only diffusely distributed N-terminal htt fragments. Cytoplasmic inclusions in both cell types contained full-length mutant htt. CONCLUSIONS: This model and the adenovirus vectors used will be valuable for studying the function of htt and the pathogenesis of HD at molecular and cellular levels in different neuronal cell types.


Assuntos
Adenoviridae/genética , Corpo Estriado/patologia , Doença de Huntington/patologia , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Animais , Técnicas de Cultura de Células , Corpo Estriado/metabolismo , Feminino , Vetores Genéticos , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Corpos de Inclusão/metabolismo , Corpos de Inclusão Intranuclear/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Neurológicos , Mutação , Degeneração Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/metabolismo , Peptídeos/genética , Gravidez
11.
Neuron ; 49(1): 67-79, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16387640

RESUMO

Endocannabinoids are released after brain injury and believed to attenuate neuronal damage by binding to CB(1) receptors and protecting against excitotoxicity. Such excitotoxic brain lesions initially result in primary destruction of brain parenchyma, which attracts macrophages and microglia. These inflammatory cells release toxic cytokines and free radicals, resulting in secondary neuronal damage. In this study, we show that the endocannabinoid system is highly activated during CNS inflammation and that the endocannabinoid anandamide (AEA) protects neurons from inflammatory damage by CB(1/2) receptor-mediated rapid induction of mitogen-activated protein kinase phosphatase-1 (MKP-1) in microglial cells associated with histone H3 phoshorylation of the mkp-1 gene sequence. As a result, AEA-induced rapid MKP-1 expression switches off MAPK signal transduction in microglial cells activated by stimulation of pattern recognition receptors. The release of AEA in injured CNS tissue might therefore represent a new mechanism of neuro-immune communication during CNS injury, which controls and limits immune response after primary CNS damage.


Assuntos
Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Proteínas de Ciclo Celular/biossíntese , Encefalite/fisiopatologia , Endocanabinoides , Proteínas Imediatamente Precoces/biossíntese , Microglia/metabolismo , Fármacos Neuroprotetores/metabolismo , Fosfoproteínas Fosfatases/biossíntese , Proteínas Tirosina Fosfatases/biossíntese , Adulto , Animais , Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Sobrevivência Celular , Células Cultivadas , Fosfatase 1 de Especificidade Dupla , Encefalite/patologia , Encefalite/prevenção & controle , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Alcamidas Poli-Insaturadas , Proteína Fosfatase 1 , Ratos , Ratos Wistar , Receptores de Canabinoides/metabolismo , Distribuição Tecidual
12.
J Neuroinflammation ; 7: 45, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20701773

RESUMO

BACKGROUND: Neurodegenerative diseases are characterized by both mitochondrial dysfunction and activation of microglia, the macrophages of the brain. Here, we investigate the effects of mitochondrial dysfunction on the activation profile of microglial cells. METHODS: We incubated primary mouse microglia with the mitochondrial toxins 3-nitropropionic acid (3-NP) or rotenone. These mitochondrial toxins are known to induce neurodegeneration in humans and in experimental animals. We characterized lipopolysaccharide- (LPS-) induced microglial activation and the alternative, interleukin-4- (IL-4-) induced microglial activation in these mitochondrial toxin-treated microglial cells. RESULTS: We found that, while mitochondrial toxins did not affect LPS-induced activation, as measured by release of tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-1beta (IL-1beta), they did inhibit part of the IL-4-induced alternative activation, as measured by arginase activity and expression, induction of insulin-like growth factor 1 (IGF-1) and the counteraction of the LPS induced cytokine release. CONCLUSIONS: Mitochondrial dysfunction in microglial cells inhibits part of the IL-4-induced alternative response. Because this alternative activation is considered to be associated with wound healing and an attenuation of inflammation, mitochondrial dysfunction in microglial cells might contribute to the detrimental effects of neuroinflammation seen in neurodegenerative diseases.


Assuntos
Citocinas/imunologia , Microglia/imunologia , Mitocôndrias/imunologia , Análise de Variância , Animais , Western Blotting , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/imunologia , Fator de Crescimento Insulin-Like I/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurotoxinas/farmacologia , Nitrocompostos/farmacologia , Propionatos/farmacologia , Rotenona/farmacologia , Desacopladores/farmacologia
13.
Neurochem Int ; 110: 14-24, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28826718

RESUMO

The modulation of the brain endocannabinoid system has been identified as an option to treat neurodegenerative diseases including Parkinson's disease (PD). Especially the elevation of endocannabinoid levels by inhibition of hydrolytic degradation represents a valuable approach. To evaluate whether monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH) inhibition could be beneficial for PD, we examined in parallel the therapeutic potential of the highly selective MAGL inhibitor KML29 elevating 2-arachidonoylglyerol (2-AG) levels and the highly selective FAAH inhibitor PF-3845 elevating anandamide (AEA) levels in a chronic methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/probenecid) mouse model of PD. Chronic administration of KML29 (10 mg/kg) but not PF-3845 (10 mg/kg) attenuated striatal MPTP/probenecid-induced dopamine depletion. Furthermore, KML29 induced an increase in Gdnf but not Bdnf expression, whereas PF-3845 decreased the MPTP/probenecid-induced Cnr2 expression without any effects on neurotrophin expression. Investigation of treatment-naïve striatal mRNA levels revealed a high presence of Gdnf and Mgll in contrast to Bdnf and Faah. Treatment of primary mouse microglia with 2-AG increased Gdnf but not Bdnf expression, suggesting that microglia might mediate the observed KML29-induced increase in Gdnf. In summary, pharmacological MAGL but not FAAH inhibition in the chronic MPTP/probenecid model attenuated the MPTP/probenecid-induced effects on striatal dopamine levels which were accompanied by an increase in 2-AG levels.


Assuntos
Amidoidrolases/antagonistas & inibidores , Dopamina/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Monoacilglicerol Lipases/antagonistas & inibidores , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Amidoidrolases/metabolismo , Animais , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/metabolismo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Resultado do Tratamento
14.
Front Mol Neurosci ; 10: 156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603486

RESUMO

Neurodegenerative diseases are characterized by distinct patterns of neuronal loss. In amyotrophic lateral sclerosis (ALS) upper and lower motoneurons degenerate whereas in Huntington's disease (HD) medium spiny neurons in the striatum are preferentially affected. Despite these differences the pathophysiological mechanisms and risk factors are remarkably similar. In addition, non-neuronal features, such as weight loss implicate a dysregulation in energy metabolism. Mammalian sirtuins, especially the mitochondrial NAD+ dependent sirtuin 3 (SIRT3), regulate mitochondrial function and aging processes. SIRT3 expression depends on the activity of the metabolic master regulator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a modifier of ALS and HD in patients and model organisms. This prompted us to systematically probe Sirt3 mRNA and protein levels in mouse models of ALS and HD and to correlate these with patient tissue levels. We found a selective reduction of Sirt3 mRNA levels and function in the cervical spinal cord of end-stage ALS mice (superoxide dismutase 1, SOD1G93A). In sharp contrast, a tendency to increased Sirt3 mRNA levels was found in the striatum in HD mice (R6/2). Cultured primary neurons express the highest levels of Sirt3 mRNA. In primary cells from PGC-1α knock-out (KO) mice the Sirt3 mRNA levels were highest in astrocytes. In human post mortem tissue increased mRNA and protein levels of Sirt3 were found in the spinal cord in ALS, while Sirt3 levels were unchanged in the human HD striatum. Based on these findings we conclude that SIRT3 mediates the different effects of PGC-1α during the course of transgenic (tg) ALS and HD and in the human conditions only partial aspects Sirt3 dysregulation manifest.

15.
Neuropharmacology ; 124: 157-169, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28373073

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor neuron system with limited therapeutic options. While an increasing number of ALS patients can be linked to a small number of autosomal-dominantly inherited cases, most cases are termed sporadic. Both forms are clinically and histopathologically indistinguishable, raising the prospect that they share key pathogenic steps, including potential therapeutic intervention points. The endocannabinoid system is emerging as a versatile, druggable therapeutic target in the CNS and its dysregulation is an early hallmark of neurodegeneration. Whether this is a defense mechanism or part of the pathogenesis remains to be determined. The neuroprotective and anti-inflammatory endocannabinoid 2-arachidonoylglycerol (2-AG), which is degraded by monoacylglycerol lipase (MAGL), accumulates in the spinal cords of transgenic models of ALS. We tested the hypothesis that this 2-AG increase is a protective response in the low-copy SOD1G93A mouse model of ALS. We show that oral application of the MAGL inhibitor KML29 delays disease onset, progression and survival. Furthermore, we could demonstrate that KML29 reduced proinflammatory cytokines and increased brain-derived neurotrophic factor (BDNF) expression levels in the spinal cord, the major site of neurodegeneration in ALS. Moreover, treatment of primary mouse neurons and primary mousecroglia with 2-AG confirmed the neuroprotective and anti-inflammatory action by increasing BDNF and arginase-1 and decreasing proinflammatory cytokines in vitro. In summary, we show that elevating 2-AG levels by MAGL inhibition is a therapeutic target in ALS and demonstrate that the endocannabinoid defense mechanisms can be exploited therapeutically in neurodegenerative diseases. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Benzodioxóis/uso terapêutico , Terapia de Alvo Molecular/métodos , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/uso terapêutico , Medula Espinal/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Arginase/metabolismo , Benzodioxóis/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Feminino , Glicerídeos/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Neurônios/metabolismo , Piperidinas/farmacologia , Cultura Primária de Células
16.
PLoS One ; 12(4): e0175248, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28406926

RESUMO

Alterations in mitochondrial respiration are an important hallmark of Huntington's disease (HD), one of the most common monogenetic causes of neurodegeneration. The ubiquitous expression of the disease causing mutant huntingtin gene raises the prospect that mitochondrial respiratory deficits can be detected in skeletal muscle. While this tissue is readily accessible in humans, transgenic animal models offer the opportunity to cross-validate findings and allow for comparisons across organs, including the brain. The integrated respiratory chain function of the human vastus lateralis muscle was measured by high-resolution respirometry (HRR) in freshly taken fine-needle biopsies from seven pre-manifest HD expansion mutation carriers and nine controls. The respiratory parameters were unaffected. For comparison skeletal muscle isolated from HD knock-in mice (HdhQ111) as well as a broader spectrum of tissues including cortex, liver and heart muscle were examined by HRR. Significant changes of mitochondrial respiration in the HdhQ knock-in mouse model were restricted to the liver and the cortex. Mitochondrial mass as quantified by mitochondrial DNA copy number and citrate synthase activity was stable in murine HD-model tissue compared to control. mRNA levels of key enzymes were determined to characterize mitochondrial metabolic pathways in HdhQ mice. We demonstrated the feasibility to perform high-resolution respirometry measurements from small human HD muscle biopsies. Furthermore, we conclude that alterations in respiratory parameters of pre-manifest human muscle biopsies are rather limited and mirrored by a similar absence of marked alterations in HdhQ skeletal muscle. In contrast, the HdhQ111 murine cortex and liver did show respiratory alterations highlighting the tissue specific nature of mutant huntingtin effects on respiration.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington , Mitocôndrias Musculares , Músculo Esquelético/metabolismo , Mutação , Consumo de Oxigênio , Adulto , Idoso , Animais , Biópsia por Agulha Fina , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo
17.
Sci Rep ; 7(1): 8513, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819135

RESUMO

PGC-1α is a versatile inducer of mitochondrial biogenesis and responsive to the changing energy demands of the cell. As mitochondrial ATP production requires proteins that derive from translation products of cytosolic ribosomes, we asked whether PGC-1α directly takes part in ribosomal biogenesis. Here, we show that a fraction of cellular PGC-1α localizes to the nucleolus, the site of ribosomal transcription by RNA polymerase I. Upon activation PGC-1α associates with the ribosomal DNA and boosts recruitment of RNA polymerase I and UBF to the rDNA promoter. This induces RNA polymerase I transcription under different stress conditions in cell culture and mouse models as well as in healthy humans and is impaired already in early stages of human Huntington's disease. This novel molecular link between ribosomal and mitochondrial biogenesis helps to explain sarcopenia and cachexia in diseases of neurodegenerative origin.


Assuntos
Doença de Huntington/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Ribossômico/biossíntese , Transcrição Gênica , Adulto , Idoso , Animais , Biópsia , Células Cultivadas , DNA/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase I/metabolismo , Adulto Jovem
18.
J Neurosci ; 23(4): 1398-405, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12598628

RESUMO

During neuroinflammation, activated microglial cells migrate toward dying neurons, where they exacerbate local cell damage. The signaling molecules that trigger microglial cell migration are poorly understood. In this paper, we show that pathological overstimulation of neurons by glutamate plus carbachol dramatically increases the production of the endocannabinoid 2-arachidonylglycerol (2-AG) but only slightly increases the production of anandamide and does not affect the production of two putative endocannabinoids, homo-gamma-linolenylethanolamide and docosatetraenylethanolamide. We further show that pathological stimulation of microglial cells with ATP also increases the production of 2-AG without affecting the amount of other endocannabinoids. Using a Boyden chamber assay, we provide evidence that 2-AG triggers microglial cell migration. This effect of 2-AG occurs through CB2 and abnormal-cannabidiol-sensitive receptors, with subsequent activation of the extracellular signal-regulated kinase 1/2 signal transduction pathway. It is important to note that cannabinol and cannabidiol, two nonpsychotropic ingredients present in the marijuana plant, prevent the 2-AG-induced cell migration by antagonizing the CB2 and abnormal-cannabidiol-sensitive receptors, respectively. Finally, we show that microglial cells express CB2 receptors at the leading edge of lamellipodia, which is consistent with the involvement of microglial cells in cell migration. Our study identifies a cannabinoid signaling system regulating microglial cell migration. Because this signaling system is likely to be involved in recruiting microglial cells toward dying neurons, we propose that cannabinol and cannabidiol are promising nonpsychotropic therapeutics to prevent the recruitment of these cells at neuroinflammatory lesion sites.


Assuntos
Ácidos Araquidônicos , Movimento Celular , Microglia/fisiologia , Receptores de Droga/fisiologia , Animais , Moduladores de Receptores de Canabinoides , Canabinoides/farmacologia , Carbacol/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Endocanabinoides , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Ácido Glutâmico/farmacologia , Glicerídeos/biossíntese , Camundongos , Microglia/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Mensageiro/biossíntese , Receptores de Canabinoides , Receptores de Droga/classificação , Receptores de Droga/genética
19.
Neuropharmacology ; 91: 148-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25497453

RESUMO

Monoacylglycerol lipase (MAGL) is part of the endocannabinoid and the prostaglandin signaling system. MAGL degrades the endocannabinoid 2-arachidonoylglycerol (2-AG) into glycerol and arachidonic acid. MAGL-induced arachidonic acid is the primary source for prostaglandin synthesis in the brain. 2-AG mainly induces neuroprotective and anti-inflammatory effects, whereas prostaglandins are related to pro-inflammatory effects inducing neurotoxicity. Therefore, inhibition of MAGL represents a promising target for neurological diseases characterized by inflammation. However, as 2-AG is an agonist for the cannabinoid receptor 1 (CB1), inhibition of MAGL might be associated with unwanted cannabimimetic effects. Here, we show that oral administration of KML29, a highly selective inhibitor of MAGL, induced large and dose-dependent changes in 2-AG levels in vivo in brain and spinal cord of mice. Of note, MAGL inhibition by KML29 induced a decrease in prostaglandin levels in brain and most peripheral tissues but not in the spinal cord. MAGL expression was highest in fat, liver and brain, whereas the cytosolic phospholipase A2 (cPLA2), a further enzyme responsible for arachidonic acid production, was highly expressed in spinal cord, muscle and spleen. In addition, high doses (10 mg/kg) of KML29 induced some cannabimimetic effects in vivo in the tetrad test, including hypothermia, analgesia and hypomotility without induction of cataleptic behavior. In summary, inhibition of MAGL by KML29 represents a promising strategy for targeting the cannabinoid and prostaglandin system of the brain with only a moderate induction of cannabimimetic effects.


Assuntos
Analgésicos/farmacologia , Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Piperidinas/farmacologia , Tecido Adiposo Marrom/química , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Ácido Araquidônico/análise , Ácidos Araquidônicos/análise , Química Encefálica/efeitos dos fármacos , Endocanabinoides/análise , Feminino , Glicerídeos/análise , Inflamação/metabolismo , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Prostaglandinas/análise , Músculo Quadríceps/química , Músculo Quadríceps/efeitos dos fármacos , Medula Espinal/química , Medula Espinal/efeitos dos fármacos , Baço/química , Baço/efeitos dos fármacos
20.
PLoS One ; 8(10): e76670, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098549

RESUMO

Fumaric acid esters (FAE) are oral analogs of fumarate that have recently been shown to decrease relapse rate and disease progression in multiple sclerosis (MS), prompting to investigate their protective potential in other neurological diseases such as amyotrophic lateral sclerosis (ALS). Despite efficacy in MS, mechanisms of action of FAEs are still largely unknown. FAEs are known to activate the transcription factor Nrf2 and downstream anti-oxidant responses through the succination of Nrf2 inhibitor KEAP1. However, fumarate is also a known inhibitor of prolyl-hydroxylases domain enzymes (PhD), and PhD inhibition might lead to stabilization of the HIF-1α transcription factor under normoxic conditions and subsequent activation of a pseudo hypoxic response. Whether Nrf2 activation is associated with HIF-1α stabilization in response to FAEs in cell types relevant to MS or ALS remains unknown. Here, we show that FAEs elicit HIF-1α accumulation, and VEGF release as its expected consequence, in astrocytes but not in other cell types of the central nervous system. Reporter assays demonstrated that increased astrocytic VEGF release in response to FAEs was dependent upon both HIF-1α and Nrf2 activation. Last, astrocytes of transgenic mice expressing SOD1(G93A), an animal model of ALS, displayed reduced VEGF release in response to FAEs. These studies show that FAEs elicit different signaling pathways in cell types from the central nervous system, in particular a pseudo-hypoxic response in astrocytes. Disease relevant mutations might affect this response.


Assuntos
Esclerose Lateral Amiotrófica/genética , Astrócitos/efeitos dos fármacos , Fumaratos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fator 2 Relacionado a NF-E2/genética , Fator A de Crescimento do Endotélio Vascular/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Especificidade de Órgãos , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fator A de Crescimento do Endotélio Vascular/agonistas , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA