Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurobiol Dis ; 152: 105299, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33600953

RESUMO

Triosephosphate isomerase (TPI) deficiency (Df) is a rare recessive metabolic disorder that manifests as hemolytic anemia, locomotor impairment, and progressive neurodegeneration. Research suggests that TPI Df mutations, including the "common" TPIE105Dmutation, result in reduced TPI protein stability that appears to underlie disease pathogenesis. Drosophila with the recessive TPIsugarkill allele (a.k.a. sgk or M81T) exhibit progressive locomotor impairment, neuromuscular impairment and reduced longevity, modeling the human disorder. TPIsugarkill produces a functional protein that is degraded by the proteasome. Molecular chaperones, such as Hsp70 and Hsp90, have been shown to contribute to the regulation of TPIsugarkill degradation. In addition, stabilizing the mutant protein through chaperone modulation results in improved TPI deficiency phenotypes. To identify additional regulators of TPIsugarkill degradation, we performed a genome-wide RNAi screen that targeted known and predicted quality control proteins in the cell to identify novel factors that modulate TPIsugarkill turnover. Of the 430 proteins screened, 25 regulators of TPIsugarkill were identified. Interestingly, 10 proteins identified were novel, previously undescribed Drosophila proteins. Proteins involved in co-translational protein quality control and ribosome function were also isolated in the screen, suggesting that TPIsugarkill may undergo co-translational selection for polyubiquitination and proteasomal degradation as a nascent polypeptide. The proteins identified in this study may reveal novel pathways for the degradation of a functional, cytosolic protein by the ubiquitin proteasome system and define therapeutic pathways for TPI Df and other biomedically important diseases.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Proteínas de Drosophila/metabolismo , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/metabolismo , Animais , Modelos Animais de Doenças , Drosophila melanogaster
2.
Proc Natl Acad Sci U S A ; 114(43): E9135-E9144, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073110

RESUMO

Alzheimer's disease (AD) comprises multifactorial ailments for which current therapeutic strategies remain insufficient to broadly address the underlying pathophysiology. Epigenetic gene regulation relies upon multifactorial processes that regulate multiple gene and protein pathways, including those involved in AD. We therefore took an epigenetic approach where a single drug would simultaneously affect the expression of a number of defined AD-related targets. We show that the small-molecule histone deacetylase inhibitor M344 reduces beta-amyloid (Aß), reduces tau Ser396 phosphorylation, and decreases both ß-secretase (BACE) and APOEε4 gene expression. M344 increases the expression of AD-relevant genes: BDNF, α-secretase (ADAM10), MINT2, FE65, REST, SIRT1, BIN1, and ABCA7, among others. M344 increases sAPPα and CTFα APP metabolite production, both cleavage products of ADAM10, concordant with increased ADAM10 gene expression. M344 also increases levels of immature APP, supporting an effect on APP trafficking, concurrent with the observed increase in MINT2 and FE65, both shown to increase immature APP in the early secretory pathway. Chronic i.p. treatment of the triple transgenic (APPsw/PS1M146V/TauP301L) mice with M344, at doses as low as 3 mg/kg, significantly prevented cognitive decline evaluated by Y-maze spontaneous alternation, novel object recognition, and Barnes maze spatial memory tests. M344 displays short brain exposure, indicating that brief pulses of daily drug treatment may be sufficient for long-term efficacy. Together, these data show that M344 normalizes several disparate pathogenic pathways related to AD. M344 therefore serves as an example of how a multitargeting compound could be used to address the polygenic nature of multifactorial diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Memória/efeitos dos fármacos , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Memória/fisiologia , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Proteínas Repressoras/genética , Vorinostat
3.
Biol Open ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292114

RESUMO

Reactive oxygen species (ROS) are associated with aging and neurodegeneration, but the significance of this association remains obscure. Here, using a Drosophila Cdk5 model of age-related neurodegeneration, we probe this relationship in the pathologically relevant tissue, the brain, by quantifying three specific mitochondrial ROS and manipulating these redox species pharmacologically. Our goal is to ask whether pathology-associated changes in redox state are detrimental for survival, whether they may be beneficial responses to pathology, or whether they are covariates of pathology that do not alter viability. We find, surprisingly, that increasing mitochondrial H2O2 correlates with improved survival. We also find evidence that drugs that alter the mitochondrial glutathione redox potential modulate survival primarily through the compensatory effects they induce rather than through their direct effects on the final mitochondrial glutathione redox potential. We also find that the response to treatment with a redox-altering drug varies depending on the age and genotype of the individual receiving the drug as well as the duration of the treatment. These data have important implications for the design and interpretation of studies investigating the effect of redox state on health and disease as well as on efforts to modify the redox state to achieve therapeutic goals.

4.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585927

RESUMO

Reactive oxygen species (ROS) are associated with aging and neurodegeneration, but the significance of this association remains obscure. Here, using a Drosophila model of age-related neurodegeneration, we probe this relationship in the pathologically relevant tissue, the brain, by quantifying three specific mitochondrial ROS and manipulating these redox species pharmacologically. Our goal is to ask whether pathology-associated changes in redox state are detrimental for survival, whether they may be beneficial responses, or whether they are simply covariates of pathology that do not alter viability. We find, surprisingly, that increasing mitochondrial H2O2 correlates with improved survival. We also find evidence that drugs that alter the mitochondrial glutathione redox potential modulate survival primarily through the compensatory effects they induce rather than through their direct effects on the final mitochondrial glutathione redox potential per se. We also find that the response to treatment with a redox-altering drug varies dramatically depending on the age at which the drug is administered, the duration of the treatment, and the genotype of the individual receiving the drug. These data have important implications for the design and interpretation of studies investigating the effect of redox state on health and disease as well as on efforts to modify the redox state to achieve therapeutic goals.

5.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405730

RESUMO

Changes in mitochondrial distribution are a feature of numerous age-related neurodegenerative diseases. In Drosophila, reducing the activity of Cdk5 causes a neurodegenerative phenotype and is known to affect several mitochondrial properties. Therefore, we investigated whether alterations of mitochondrial distribution are involved in Cdk5-associated neurodegeneration. We find that reducing Cdk5 activity does not alter the balance of mitochondrial localization to the somatodendritic vs. axonal neuronal compartments of the mushroom body, the learning and memory center of the Drosophila brain. We do, however, observe changes in mitochondrial distribution at the axon initial segment (AIS), a neuronal compartment located in the proximal axon involved in neuronal polarization and action potential initiation. Specifically, we observe that mitochondria are partially excluded from the AIS in wild-type neurons, but that this exclusion is lost upon reduction of Cdk5 activity, concomitant with the shrinkage of the AIS domain that is known to occur in this condition. This mitochondrial redistribution into the AIS is not likely due to the shortening of the AIS domain itself but rather due to altered Cdk5 activity. Furthermore, mitochondrial redistribution into the AIS is unlikely to be an early driver of neurodegeneration in the context of reduced Cdk5 activity.

6.
Biol Open ; 13(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912559

RESUMO

Changes in mitochondrial distribution are a feature of numerous age-related neurodegenerative diseases. In Drosophila, reducing the activity of Cdk5 causes a neurodegenerative phenotype and is known to affect several mitochondrial properties. Therefore, we investigated whether alterations of mitochondrial distribution are involved in Cdk5-associated neurodegeneration. We find that reducing Cdk5 activity does not alter the balance of mitochondrial localization to the somatodendritic versus axonal neuronal compartments of the mushroom body, the learning and memory center of the Drosophila brain. We do, however, observe changes in mitochondrial distribution at the axon initial segment (AIS), a neuronal compartment located in the proximal axon involved in neuronal polarization and action potential initiation. Specifically, we observe that mitochondria are partially excluded from the AIS in wild-type neurons, but that this exclusion is lost upon reduction of Cdk5 activity, concomitant with the shrinkage of the AIS domain that is known to occur in this condition. This mitochondrial redistribution into the AIS is not likely due to the shortening of the AIS domain itself but rather due to altered Cdk5 activity. Furthermore, mitochondrial redistribution into the AIS is unlikely to be an early driver of neurodegeneration in the context of reduced Cdk5 activity.


Assuntos
Axônios , Quinase 5 Dependente de Ciclina , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Axônios/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Modelos Animais de Doenças , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Segmento Inicial do Axônio/metabolismo , Corpos Pedunculados/metabolismo , Degeneração Neural , Neurônios/metabolismo , Drosophila melanogaster/metabolismo
7.
Mech Ageing Dev ; 213: 111839, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37354919

RESUMO

What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Longevidade/fisiologia , Envelhecimento/fisiologia , Fenótipo
8.
Front Mol Neurosci ; 15: 831116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283733

RESUMO

Aging and age-related neurodegeneration are both associated with the accumulation of unfolded and abnormally folded proteins, highlighting the importance of protein homeostasis (termed proteostasis) in maintaining organismal health. To this end, two cellular compartments with essential protein folding functions, the endoplasmic reticulum (ER) and the mitochondria, are equipped with unique protein stress responses, known as the ER unfolded protein response (UPR ER ) and the mitochondrial UPR (UPR mt ), respectively. These organellar UPRs play roles in shaping the cellular responses to proteostatic stress that occurs in aging and age-related neurodegeneration. The loss of adaptive UPR ER and UPR mt signaling potency with age contributes to a feed-forward cycle of increasing protein stress and cellular dysfunction. Likewise, UPR ER and UPR mt signaling is often altered in age-related neurodegenerative diseases; however, whether these changes counteract or contribute to the disease pathology appears to be context dependent. Intriguingly, altering organellar UPR signaling in animal models can reduce the pathological consequences of aging and neurodegeneration which has prompted clinical investigations of UPR signaling modulators as therapeutics. Here, we review the physiology of both the UPR ER and the UPR mt , discuss how UPR ER and UPR mt signaling changes in the context of aging and neurodegeneration, and highlight therapeutic strategies targeting the UPR ER and UPR mt that may improve human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA