Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 33(10): 3348-3366, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323976

RESUMO

Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.


Assuntos
Metabolismo dos Carboidratos , Parede Celular/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo
2.
Mol Plant ; 12(9): 1278-1293, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31102785

RESUMO

To sustain plant growth, development, and crop yield, sucrose must be transported from leaves to distant parts of the plant, such as seeds and roots. To identify genes that regulate sucrose accumulation and transport in maize (Zea mays), we isolated carbohydrate partitioning defective33 (cpd33), a recessive mutant that accumulated excess starch and soluble sugars in mature leaves. The cpd33 mutants also exhibited chlorosis in the leaf blades, greatly diminished plant growth, and reduced fertility. Cpd33 encodes a protein containing multiple C2 domains and transmembrane regions. Subcellular localization experiments showed the CPD33 protein localized to plasmodesmata (PD), the plasma membrane, and the endoplasmic reticulum. We also found that a loss-of-function mutant of the CPD33 homolog in Arabidopsis, QUIRKY, had a similar carbohydrate hyperaccumulation phenotype. Radioactively labeled sucrose transport assays showed that sucrose export was significantly lower in cpd33 mutant leaves relative to wild-type leaves. However, PD transport in the adaxial-abaxial direction was unaffected in cpd33 mutant leaves. Intriguingly, transmission electron microscopy revealed fewer PD at the companion cell-sieve element interface in mutant phloem tissue, providing a possible explanation for the reduced sucrose export in mutant leaves. Collectively, our results suggest that CPD33 functions to promote symplastic transport into sieve elements.


Assuntos
Folhas de Planta/metabolismo , Sacarose/metabolismo , Zea mays/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Floema/metabolismo , Plasmodesmos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA