Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
3.
J Chem Phys ; 124(16): 164305, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16674133

RESUMO

The dynamics of dissociative charge transfer and collision induced dissociation of Ar(2) (+) and Ar(3) (+) clusters colliding with Ar atoms at 4.8 keV has been investigated using a novel multifragment detection scheme that maps the postcollision vectors of all particles simultaneously. Estimation of internal energies and measurement of pre- and postcollision vectors enables a full description of reaction dynamics. The prominence of electronic excitation in defining the dynamics of these collision systems is demonstrated. The dissociation dynamics of Ar(3) (+) clusters is distinctly different from that of Ar(2) (+). This is attributed to a combination of lower internal energies and predominantly triangular T-shape structure of the Ar(3) (+) ion.

4.
J Chem Phys ; 123(17): 174307, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16375528

RESUMO

Ar2(+) ions produced in a cooled supersonic expansion by electron-impact ionization are accelerated at 2.5 keV and kept during few milliseconds inside a linear electrostatic trap. The lifetime of the metastable Ar2(+) ion is determined from the measurement of the rate of the argon atoms escaping the trap. The lifetime and the relative metastable populations are measured as a function of the pressure and temperature in the supersonic expansion, i.e., of the mean cluster size. Possible mechanisms responsible for the metastable formation are discussed.

5.
Phys Rev Lett ; 93(6): 063401, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15323628

RESUMO

We present a combined experimental and theoretical study of fragmentation of small Cn clusters (n = 5,7,9) produced in charge transfer collisions of fast (nu = 2.6 a.u.) singly charged Cn+ clusters with He. Branching ratios for all possible fragmentation channels have been measured. Comparison with microcanonical Metropolis Monte Carlo simulations based on quantum chemistry calculations allows us to determine the energy distribution of the excited clusters just after the collision.

7.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA