Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(3): 686-703, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135756

RESUMO

Tachykinin receptor 3 (TACR3) is a member of the tachykinin receptor family and falls within the rhodopsin subfamily. As a G protein-coupled receptor, it responds to neurokinin B (NKB), its high-affinity ligand. Dysfunctional TACR3 has been associated with pubertal failure and anxiety, yet the mechanisms underlying this remain unclear. Hence, we have investigated the relationship between TACR3 expression, anxiety, sex hormones, and synaptic plasticity in a rat model, which indicated that severe anxiety is linked to dampened TACR3 expression in the ventral hippocampus. TACR3 expression in female rats fluctuates during the estrous cycle, reflecting sensitivity to sex hormones. Indeed, in males, sexual development is associated with a substantial increase in hippocampal TACR3 expression, coinciding with elevated serum testosterone and a significant reduction in anxiety. TACR3 is predominantly expressed in the cell membrane, including the presynaptic compartment, and its modulation significantly influences synaptic activity. Inhibition of TACR3 activity provokes hyperactivation of CaMKII and enhanced AMPA receptor phosphorylation, associated with an increase in spine density. Using a multielectrode array, stronger cross-correlation of firing was evident among neurons following TACR3 inhibition, indicating enhanced connectivity. Deficient TACR3 activity in rats led to lower serum testosterone levels, as well as increased spine density and impaired long-term potentiation (LTP) in the dentate gyrus. Remarkably, aberrant expression of functional TACR3 in spines results in spine shrinkage and pruning, while expression of defective TACR3 increases spine density, size, and the magnitude of cross-correlation. The firing pattern in response to LTP induction was inadequate in neurons expressing defective TACR3, which could be rectified by treatment with testosterone. In conclusion, our study provides valuable insights into the intricate interplay between TACR3, sex hormones, anxiety, and synaptic plasticity. These findings highlight potential targets for therapeutic interventions to alleviate anxiety in individuals with TACR3 dysfunction and the implications of TACR3 in anxiety-related neural changes provide an avenue for future research in the field.


Assuntos
Ansiedade , Hipocampo , Plasticidade Neuronal , Testosterona , Animais , Testosterona/metabolismo , Plasticidade Neuronal/fisiologia , Masculino , Ratos , Feminino , Ansiedade/metabolismo , Hipocampo/metabolismo , Receptores da Neurocinina-3/metabolismo , Neurônios/metabolismo , Potenciação de Longa Duração/fisiologia , Receptores de Taquicininas/metabolismo , Ratos Sprague-Dawley
2.
Mol Cell ; 68(2): 374-387.e12, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29033321

RESUMO

N6-methyladenosine (m6A) is an essential internal RNA modification that is critical for gene expression control in most organisms. Proteins with a YTH domain recognize m6A marks and are mediators of molecular functions like RNA splicing, mRNA decay, and translation control. Here we demonstrate that YTH domain-containing 2 (YTHDC2) is an m6A reader that is essential for male and female fertility in mice. High-throughput mapping of the m6A transcriptome and expression analysis in the Yhtdc2 mutant testes reveal an upregulation of m6A-enriched transcripts. Our biochemical studies indicate that YTHDC2 is an RNA-induced ATPase with a 3'→5' RNA helicase activity. Furthermore, YTHDC2 recruits the 5'→3' exoribonuclease XRN1 via Ankyrin repeats that are inserted in between the RecA modules of the RNA helicase domain. Our studies reveal a role for YTHDC2 in modulating the levels of m6A-modified germline transcripts to maintain a gene expression program that is conducive for progression through meiosis.


Assuntos
Adenosina/análogos & derivados , Regulação da Expressão Gênica/fisiologia , Meiose/fisiologia , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animais , Repetição de Anquirina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Domínios Proteicos , RNA Helicases/genética , RNA Mensageiro/genética
3.
Proc Natl Acad Sci U S A ; 117(23): 12636-12642, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461359

RESUMO

Mammalian teeth are attached to the jawbone through an exquisitely controlled mineralization process: unmineralized collagen fibers of the periodontal ligament anchor directly into the outer layer of adjoining mineralized tissues (cementum and bone). The sharp interface between mineralized and nonmineralized collagenous tissues makes this an excellent model to study the mechanisms by which extracellular matrix macromolecules control collagen mineralization. While acidic phosphoproteins, localized in the mineralized tissues, play key roles in control of mineralization, the role of glycosaminoglycans (GAGs) is less clear. As several proteoglycans are found only in the periodontal ligament, it has been hypothesized that these inhibit mineralization of collagen in this tissue. Here we used an in vitro model based on remineralization of mouse dental tissues to determine the role of matrix GAGs in control of mineralization. GAGs were selectively removed from demineralized mouse periodontal sections via enzymatic digestion. Proteomic analysis confirmed that enzymatic GAG removal does not significantly alter protein content. Analysis of remineralized tissue sections by transmission electron microscopy (TEM) shows that GAG removal reduced the rate of remineralization in mineralized tissues compared to the untreated control, while the ligament remained unmineralized. Protein removal with trypsin also reduced the rate of mineralization, but to a lesser extent than GAG removal, despite a much larger effect on protein content. These results indicate that GAGs promote mineralization in mineralized dental tissues rather than inhibiting mineral formation in the ligament, which may have broader implications for understanding control of collagen mineralization in connective tissues.


Assuntos
Materiais Biomiméticos/metabolismo , Biomineralização , Colágeno/metabolismo , Dentina/metabolismo , Glicosaminoglicanos/metabolismo , Ligamento Periodontal/metabolismo , Animais , Apatitas/química , Materiais Biomiméticos/química , Dentina/ultraestrutura , Matriz Extracelular/metabolismo , Camundongos , Ligamento Periodontal/ultraestrutura , Proteoma
4.
Plant J ; 108(5): 1400-1421, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592024

RESUMO

Lipid anchors are common post-translational modifications for proteins engaged in signaling and vesicular transport in eukaryotic cells. Rab proteins are geranylgeranylated at their C-termini, a modification which is important for their stable binding to lipid bilayers. The Rab escort protein (REP) is an accessory protein of the Rab geranylgeranyl transferase (RGT) complex and it is obligatory for Rab prenylation. While REP-Rab interactions have been studied by biochemical, structural, and genetic methods in animals and yeast, data on the plant RGT complex are still limited. Here we use hydrogen-deuterium exchange mass spectrometry (HDX-MS) to describe the structural basis of plant REP-Rab binding. The obtained results show that the interaction of REP with Rabs is highly dynamic and involves specific structural changes in both partners. In some cases the Rab and REP regions involved in the interaction are molecule-specific, and in other cases they are common for a subset of Rabs. In particular, the C-terminus of REP is not involved in binding of unprenylated Rab proteins in plants, in contrast to mammalian REP. In line with this, a C-terminal REP truncation does not have pronounced phenotypic effects in planta. On the contrary, a complete lack of functional REP leads to male sterility in Arabidopsis: pollen grains develop in the anthers, but they do not germinate efficiently and hence are unable to transmit the mutated allele. The presented data show that the mechanism of action of REP in the process of Rab geranylgeranylation is different in plants than in animals or yeast.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transdução de Sinal/genética , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Infertilidade das Plantas , Pólen , Ligação Proteica , Prenilação de Proteína , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
5.
Biomacromolecules ; 22(7): 2996-3004, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34152724

RESUMO

The extracellular matrix of hard connective tissues is composed primarily of mineralized collagen fibrils. Acidic noncollagenous proteins play important roles in mediating mineralization of collagen. Polyaspartate, a homopolymer substitute for such proteins, has been used extensively in in vitro models to produce biomimetic mineralized collagen. Polyglutamate behaves differently in mineralization models, despite its chemical similarity. We show that polyaspartate is a 350 times more effective inhibitor of solution precipitation of hydroxyapatite than polyglutamate. Supersaturated CaP solutions stabilized with polyaspartic acid produce collagen with aligned intrafibrillar mineral, while solutions containing polyglutamate lead to the formation of unaligned mineral clusters on the fibril surface. Molecular analysis showed that the commercial polyaspartic acid contains substantial isomerization, unlike polyglutamic acid. Hence, the secondary structure of polyaspartic acid is more disordered than that of polyglutamic acid. The increased flexibility of the polyaspartic acid chain may explain its potency as an inhibitor of solution crystallization and a mediator of intrafibrillar collagen mineralization.


Assuntos
Biomimética , Ácido Poliglutâmico , Colágeno , Matriz Extracelular , Isomerismo
6.
FASEB J ; 33(6): 6877-6886, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840836

RESUMO

Otoliths are one of the biominerals whose formation is highly controlled by proteins. The first protein discovered to be involved in otolith biomineralization in zebrafish was starmaker (Stm). Previously, Stm was shown to be responsible for the preferential formation of aragonite, a polymorph of calcium carbonate, in otoliths. In this work, proteomic analysis of adult zebrafish otoliths was performed. Stm is the only highly phosphorylated protein found in our studies. Besides previously studied otolith proteins, we discovered several dozens of unknown proteins that reveal the likely mechanism of biomineralization. A comparison of aragonite and vaterite otoliths showed similarities in protein composition. We observed the presence of Stm in both types of otoliths. In vitro studies of 2 characteristic Stm fragments indicated that the DS-rich region has a special biomineralization activity, especially after phosphorylation.-Kalka, M., Markiewicz, N., Ptak, M., Sone, E. D., Ozyhar, A., Dobryszycki, P., Wojtas, M. In vivo and in vitro analysis of starmaker activity in zebrafish otolith biomineralization.


Assuntos
Biomineralização , Calcificação Fisiológica , Membrana dos Otólitos/fisiologia , Proteoma/análise , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Carbonato de Cálcio/metabolismo , Técnicas In Vitro , Membrana dos Otólitos/crescimento & desenvolvimento , Fosforilação , Homologia de Sequência
7.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1358-1371, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28866388

RESUMO

Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed.


Assuntos
Proteínas de Ligação ao Cálcio/química , Cálcio/química , Proteínas da Matriz Extracelular/química , Proteínas de Peixes/química , Proteínas Intrinsicamente Desordenadas/química , Membrana dos Otólitos/química , Animais , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Oncorhynchus mykiss/fisiologia , Membrana dos Otólitos/metabolismo , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
8.
Biochemistry ; 54(42): 6525-34, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26445027

RESUMO

Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 µM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 µM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.


Assuntos
Cálcio/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Animais , Carbonato de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Caseína Quinase II/metabolismo , Hidrodinâmica , Cinética , Minerais/metabolismo , Modelos Moleculares , Membrana dos Otólitos/metabolismo , Fosforilação , Conformação Proteica , Estrutura Secundária de Proteína , Peixe-Zebra/metabolismo
9.
J Proteome Res ; 13(5): 2637-48, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24625205

RESUMO

Enzymatic machineries fundamental for information processing (e.g., transcription, replication, translation) in Archaea are simplified versions of their eukaryotic counterparts. This is clearly noticeable in the conservation of sequence and structure of corresponding enzymes (see for example the archaeal DNA-directed RNA polymerase (RNAP)). In Eukarya, post-translational modifications (PTMs) often serve as functional regulatory factors for various enzymes and complexes. Among the various PTMs, methylation and acetylation have been recently attracting most attention. Nevertheless, little is known about such PTMs in Archaea, and cross-methodological studies are scarce. We examined methylation and N-terminal acetylation of endogenously purified crenarchaeal RNA polymerase from Sulfolobus shibatae (Ssh) and Sulfolobus acidocaldarius (Sac). In-gel and in-solution protein digestion methods were combined with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) mass spectrometry analysis. Overall, 20 and 26 methyl-lysines for S. shibatae and S. acidocaldarius were identified, respectively. Furthermore, two N-terminal acetylation sites for each of these organisms were assessed. As a result, we generated a high-confidence data set for the mapping of methylation and acetylation sites in both Sulfolobus species, allowing comparisons with the data previously obtained for RNAP from Sulfolobus solfataricus (Sso). We confirmed that all observed methyl-lysines are on the surface of the RNAP.


Assuntos
Proteínas Arqueais/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Lisina/metabolismo , Espectrometria de Massas/métodos , Sulfolobus acidocaldarius/enzimologia , Sulfolobus/enzimologia , Acetilação , Sequência de Aminoácidos , Sítios de Ligação/genética , Cromatografia Líquida , RNA Polimerases Dirigidas por DNA/genética , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Lisina/genética , Metilação , Dados de Sequência Molecular , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
10.
Nucleic Acids Res ; 40(19): 9941-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22848102

RESUMO

Multi-subunit RNA polymerases (RNAPs) in all three domains of life share a common ancestry. The composition of the archaeal RNAP (aRNAP) is not identical between phyla and species, with subunits Rpo8 and Rpo13 found in restricted subsets of archaea. While Rpo8 has an ortholog, Rpb8, in the nuclear eukaryal RNAPs, Rpo13 lacks clear eukaryal orthologs. Here, we report crystal structures of the DNA-bound and free form of the aRNAP from Sulfolobus shibatae. Together with biochemical and biophysical analyses, these data show that Rpo13 C-terminus binds non-specifically to double-stranded DNA. These interactions map on our RNAP-DNA binary complex on the downstream DNA at the far end of the DNA entry channel. Our findings thus support Rpo13 as a RNAP-DNA stabilization factor, a role reminiscent of eukaryotic general transcriptional factors. The data further yield insight into the mechanisms and evolution of RNAP-DNA interaction.


Assuntos
Proteínas Arqueais/química , RNA Polimerases Dirigidas por DNA/química , DNA/química , Apoproteínas/química , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Sulfolobus/enzimologia
11.
Acta Biomater ; 174: 437-446, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061675

RESUMO

Fish otoliths are calcium carbonate biominerals found in the inner ear commonly used for tracking fish biochronologies and as a model system for biomineralization. The process of fish otolith formation is biologically controlled by numerous biomacromolecules which not only affect crystal size, shape, mechanical properties, but also selection of calcium carbonate polymorph (e.g., aragonite, vaterite). The proteinaceous control over calcium carbonate polymorph selection occurs in many other species (e.g., corals, mollusks, echinoderms) but the exact mechanism of protein interactions with calcium and carbonate ions - constituents of CaCO3 - are not fully elucidated. Herein, we focus on a native Starmaker-like protein isolated from vaterite asteriscus otoliths from Cyprinus carpio. The proteomic studies show the presence of the phosphorylated protein in vaterite otoliths. In a series of in vitro mineralization experiments with Starmaker-like, we show that native phosphorylation is a crucial determinant for the selection of a crystal's polymorphic form. This is the first report showing that the switch in calcium carbonate phase depends on the phosphorylation pattern of a single isolated protein. STATEMENT OF SIGNIFICANCE: Calcium carbonate has numerous applications in industry and medicine. However, we still do not understand the mechanism of biologically driven polymorph selection which results in specific biomineral properties. Previous work on calcium carbonate biominerals showed that either several macromolecular factors or high magnesium concentration (non-physiological) are required for proper polymorph selection (e.g., in mollusk shells, corals and otoliths). In this work, we showed for the first time that protein phosphorylation is a crucial factor for controlling the calcium carbonate crystal phase. This is important because a single protein from the otolith organic matrix could switch between polymorphs depending on the phosphorylation level. It seems that protein post-translational modifications (native, not artificial) are more important for biomolecular control of crystal growth than previously considered.


Assuntos
Carbonato de Cálcio , Carpas , Animais , Carbonato de Cálcio/química , Membrana dos Otólitos/química , Membrana dos Otólitos/metabolismo , Fosforilação , Carpas/metabolismo , Proteômica , Proteínas/metabolismo
12.
Biochem Soc Trans ; 41(1): 356-61, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356311

RESUMO

In recent years, emerging structural information on the aRNAP (archaeal RNA polymerase) apparatus has shown its strong evolutionary relationship with the eukaryotic counterpart, RNA Pol (polymerase) II. A novel atomic model of SshRNAP (Sulfolobus shibatae RNAP) in complex with dsDNA (double-stranded DNA) constitutes a new piece of information helping the understanding of the mechanisms for DNA stabilization at the position downstream of the catalytic site during transcription. In Archaea, in contrast with Eukarya, downstream DNA stabilization is universally mediated by the jaw domain and, in some species, by the additional presence of the Rpo13 subunit. Biochemical and biophysical data, combined with X-ray structures of apo- and DNA-bound aRNAP, have demonstrated the capability of the Rpo13 C-terminus to bind in a sequence-independent manner to downstream DNA. In the present review, we discuss the recent findings on the aRNAP and focus on the mechanisms by which the RNAP stabilizes the bound DNA during transcription.


Assuntos
Archaea/genética , Transcrição Gênica , Archaea/enzimologia , DNA Arqueal/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Modelos Moleculares
13.
Andrology ; 11(4): 710-723, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36624638

RESUMO

BACKGROUND: Germ granules are large cytoplasmic ribonucleoprotein complexes that emerge in the germline to participate in RNA regulation. The two most prominent germ granules are the intermitochondrial cement (IMC) in meiotic spermatocytes and the chromatoid body (CB) in haploid round spermatids, both functionally linked to the PIWI-interacting RNA (piRNA) pathway. AIMS: In this study, we clarified the IMC function by identifying proteins that form complexes with a well-known IMC protein PIWIL2/MILI in the mouse testis. RESULTS: The PIWIL2 interactome included several proteins with known functions in piRNA biogenesis. We further characterized the expression and localization of two of the identified proteins, Exonuclease 3'-5' domain-containing proteins EXD1 and EXD2, and confirmed their localization to the IMC. We showed that EXD2 interacts with PIWIL2, and that the mutation of Exd2 exonuclease domain in mice induces misregulation of piRNA levels originating from specific pachytene piRNA clusters, but does not disrupt male fertility. CONCLUSION: Altogether, this study highlights the central role of the IMC as a platform for piRNA biogenesis, and suggests that EXD1 and EXD2 function in the IMC-mediated RNA regulation in postnatal male germ cells.


Assuntos
RNA de Interação com Piwi , Espermatócitos , Camundongos , Masculino , Animais , Espermatogênese/fisiologia , Grânulos de Ribonucleoproteínas de Células Germinativas , Exonucleases/metabolismo , Proteínas/metabolismo , RNA/metabolismo , RNA Interferente Pequeno/genética , Testículo/metabolismo
14.
Cell Death Dis ; 14(10): 667, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816710

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma in adults, exhibiting highly heterogenous clinical behavior and complex molecular background. In addition to the genetic complexity, different DLBCL subsets exhibit phenotypic features independent of the genetic background. For example, a subset of DLBCLs is distinguished by increased oxidative phosphorylation and unique transcriptional features, including overexpression of certain mitochondrial genes and a molecular chaperone, heat shock protein HSP90α (termed "OxPhos" DLBCLs). In this study, we identified a feed-forward pathogenetic circuit linking HSP90α and SIRT1 in OxPhos DLBCLs. The expression of the inducible HSP90α isoform remains under SIRT1-mediated regulation. SIRT1 knockdown or chemical inhibition reduced HSP90α expression in a mechanism involving HSF1 transcription factor, whereas HSP90 inhibition reduced SIRT1 protein stability, indicating that HSP90 chaperones SIRT1. SIRT1-HSP90α interaction in DLBCL cells was confirmed by co-immunoprecipitation and proximity ligation assay (PLA). The number of SIRT1-HSP90α complexes in PLA was significantly higher in OxPhos- dependent than -independent cells. Importantly, SIRT1-HSP90α interactions in OxPhos DLBCLs markedly increased in mitosis, suggesting a specific role of the complex during this cell cycle phase. RNAi-mediated and chemical inhibition of SIRT1 and/or HSP90 significantly increased the number of cells with chromosome segregation errors (multipolar spindle formation, anaphase bridges and lagging chromosomes). Finally, chemical SIRT1 inhibitors induced dose-dependent cytotoxicity in OxPhos-dependent DLBCL cell lines and synergized with the HSP90 inhibitor. Taken together, our findings define a new OxPhos-DLBCL-specific pathogenetic loop involving SIRT1 and HSP90α that regulates chromosome dynamics during mitosis and may be exploited therapeutically.


Assuntos
Segregação de Cromossomos , Proteínas de Choque Térmico HSP90 , Linfoma Difuso de Grandes Células B , Sirtuína 1 , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Chaperonas Moleculares/metabolismo , Sirtuína 1/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-22949213

RESUMO

Transcription is a fundamental process across the three domains of life and is carried out by multi-subunit enzymatic DNA-directed RNA polymerases (RNAPs). The interaction of RNAP with nucleic acids is tightly controlled for precise and processive RNA synthesis. Whilst a wealth of structural information has been gathered on the eukaryotic Pol II in complex with DNA/RNA, no information exists on its ancestral counterpart archaeal RNAP. Thus, in order to extend knowledge of the archaeal transcriptional apparatus, crystallization of Sulfolobus shibatae RNAP (molecular mass of ~400 kDa) with DNA fragments was pursued. To achieve this goal, crystal growth was first optimized using a nanoseeding technique. An ad hoc soaking protocol was then put into place, which consisted of gently exchanging the high-salt buffer used for apo-RNAP crystal growth into a low-salt buffer necessary for DNA binding to RNAP. Of the various crystals screened, one diffracted to 4.3 Å resolution and structural analysis showed the presence of bound DNA [Wojtas et al. (2012). Nucleic Acids Res. 40, doi:10.1093/nar/gks692].


Assuntos
RNA Polimerases Dirigidas por DNA/química , DNA/química , Sulfolobus/enzimologia , Cristalização , Cloreto de Potássio/química
16.
Proteins ; 79(2): 376-92, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21064127

RESUMO

Drosophila hormone receptor 38 (dHR38), an ortholog of the vertebrate NR4A subclass of nuclear receptors, responds to ecdysteroids, which mediate developmental transitions during the Drosophila life cycle. However, this response is independent of the ecdysteroid receptor, and it does not involve binding of ecdysteroids to dHR38. It has been suggested that ecdysteroids may indirectly activate dHR38, perhaps by recruiting specific proteins. There have been recent reports pointing out the decisive role that nuclear receptor N-terminal domains (NTDs) have in protein-protein interactions that are important for regulation of gene expression. It is reasonable to assume that dHR38-NTD may also be involved in some protein-protein interactions that are critical for the ecdysteroid signaling pathway. To facilitate the exploration of the molecular basis of these interactions, we developed and optimized a protocol for the efficient expression and purification of the recombinant dHR38-NTD. Using a diverse array of biochemical and biophysical methods, we carried out the first structural characterization of dHR38-NTD. The results of our study indicate that dHR38-NTD exhibits a characteristic reminiscent of pre-molten globule-like intrinsically disordered proteins existing in a partially unfolded conformation with regions of secondary structures. The dHR38-NTD structure, which apparently comprises some local, ordered, tertiary structure clusters, is pliable and can adopt more ordered conformations in response to changes in environmental conditions. Thus, dHR38-NTD, which exhibits the structural and functional characteristic of a pre-molten globule-like intrinsically disordered protein, could serve as a platform for multiple protein-protein interactions, possibly including interactions with proteins involved in an unusual ecdysteroid signaling pathway.


Assuntos
Proteínas de Drosophila/química , Receptores Citoplasmáticos e Nucleares/química , Proteínas Recombinantes/química , Sequência de Aminoácidos , Dicroísmo Circular , Simulação por Computador , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/isolamento & purificação , Fluorometria , Guanidina/química , Hidrodinâmica , Dados de Sequência Molecular , Fosforilação , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Trifluoretanol/química
17.
Biochem Soc Trans ; 39(1): 25-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21265742

RESUMO

We review recent results on the complete structure of the archaeal RNAP (RNA polymerase) enzyme of Sulfolobus shibatae. We compare the three crystal forms in which this RNAP packs (space groups P212121, P21212 and P21) and provide a preliminary biophysical characterization of the newly identified 13-subunit Rpo13. The availability of different crystal forms for this RNAP allows the analysis of the packing degeneracy and the intermolecular interactions that determine this degeneracy. We observe the pivotal role played by the protruding stalk composed of subunits Rpo4 and Rpo7 in the lattice contacts. Aided by MALLS (multi-angle laser light scattering), we have initiated the biophysical characterization of the recombinantly expressed and purified subunit Rpo13, a necessary step towards the understanding of Rpo13's role in archaeal transcription.


Assuntos
Proteínas Arqueais/química , RNA Polimerases Dirigidas por DNA/química , Subunidades Proteicas/química , RNA Arqueal/genética , Sulfolobus/enzimologia , Sulfolobus/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transcrição Gênica
18.
Transl Psychiatry ; 11(1): 324, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045447

RESUMO

The real-time live fluorescent monitoring of surface AMPA receptors (AMPARs) could open new opportunities for drug discovery and phenotypic screening concerning neuropsychiatric disorders. We have developed FORTIS, a tool based on pH sensitivity capable of detecting subtle changes in surface AMPARs at a neuronal population level. The expression of SEP-GluA1 or pHuji-GluA1 recombinant AMPAR subunits in mammalian neurons cultured in 96-well plates enables surface AMPARs to be monitored with a microplate reader. Thus, FORTIS can register rapid changes in surface AMPARs induced by drugs or genetic modifications without having to rely on conventional electrophysiology or imaging. By combining FORTIS with pharmacological manipulations, basal surface AMPARs, and plasticity-like changes can be monitored. We expect that employing FORTIS to screen for changes in surface AMPARs will accelerate both neuroscience research and drug discovery.


Assuntos
Neurônios , Receptores de AMPA , Animais , Células Cultivadas , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Receptores de AMPA/genética
19.
Sci Rep ; 11(1): 10017, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976256

RESUMO

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) genes occur in about 20% patients with acute myeloid leukemia (AML), leading to DNA hypermethylation and epigenetic deregulation. We assessed the prognostic significance of IDH1/2 mutations (IDH1/2+) in 398 AML patients with normal karyotype (NK-AML), treated with daunorubicine + cytarabine (DA), DA + cladribine (DAC), or DA + fludarabine. IDH2 mutation was an independent favorable prognostic factor for 4-year overall survival (OS) in total NK-AML population (p = 0.03, censoring at allotransplant). We next evaluated the effect of addition of cladribine to induction regimen on the patients' outcome according to IDH1/2 mutation status. In DAC group, 4-year OS was increased in IDH2+ patients, compared to IDH-wild type group (54% vs 33%; p = 0.0087, censoring at allotransplant), while no difference was observed for DA-treated subjects. In multivariate analysis, DAC independently improved the survival of IDH2+ patients (HR = 0.6 [0.37-0.93]; p = 0.024; censored at transplant), indicating that this group specifically benefits from cladribine-containing therapy. In AML cells with R140Q or R172K IDH2 mutations, cladribine restrained mutations-related DNA hypermethylation. Altogether, DAC regimen produces better outcomes in IDH2+ NK-AML patients than DA, and this likely results from the hypomethylating activity of cladribine. Our observations warrant further investigations of induction protocols combining cladribine with IDH1/2 inhibitors in IDH2-mutant.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Adolescente , Adulto , Idoso , Cladribina/uso terapêutico , Citarabina/uso terapêutico , Daunorrubicina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Polônia/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Adulto Jovem
20.
Theriogenology ; 125: 102-108, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30399506

RESUMO

Vitamin D3 acting via its nuclear receptor (VDR) was shown to target many reproductive tissues and regulate their function. Nevertheless, little is known about the role of vitamin D3 and VDR in the uterus. We hypothesized that VDR expression profile varies in the porcine uterus throughout the course of the estrous cycle, and 1,25(OH)2D3 influences uterine steroidogenic activity. The aim of this study was to investigate VDR mRNA expression, VDR protein abundance and immunolocalization in the porcine endometrium and myometrium harvested on Days 2-5, 12-13, 15-16 and 18-20 of the estrous cycle. Additionally, in studied pigs, 25OHD concentration in plasma and uterine flushings was determined by RIA. The effect of 1,25(OH)2D3 (10, 50 and 100 ng/mL) in vitro on progesterone (P4) and estradiol-17ß (E2) release by endometrial and myometrial slices obtained on Days 12-13 of the estrous cycle was also examined. Nuclear VDR immunostaining was found in endometrial (luminal and glandular epithelium, stromal cells) and myometrial cells throughout examined days of the estrous cycle. In the endometrium, the highest VDR mRNA expression was observed on Days 12-13 and 18-20, whereas the greatest VDR protein abundance was noted only on Days 12-13 of the estrous cycle. In the myometrium, either VDR transcript or protein level was the greatest on Days 12-13. Interestingly, the highest 25OHD concentration in plasma and uterine flushings was shown also on Days 12-13 of the estrous cycle. 1,25(OH)2D3 did not affect P4 release by uterine slices while myometrial release of E2 was significantly increased in response to 1,25(OH)2D3 (10 and 50 ng/mL). Overall, obtained results indicate that porcine uterus is a target tissue for vitamin D3 throughout the entire estrous cycle. VDR mRNA expression and protein abundance altered within uterine tissues depending on studied days of the estrous cycle with the greatest protein abundance during mid-luteal phase of the estrous cycle in both uterine tissues. In addition, 1,25(OH)2D3 significantly increased myometrial release of E2 on Days 12-13 of the estrous cycle. These results suggest the role of vitamin D3-VDR system in the uterus, especially as a regulator of myometrial estrogenic activity in pigs during mid-luteal phase of the estrous cycle.


Assuntos
Calcitriol/farmacologia , Estradiol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Progesterona/metabolismo , Receptores de Calcitriol/metabolismo , Útero/efeitos dos fármacos , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Receptores de Calcitriol/genética , Técnicas de Cultura de Tecidos , Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA