Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Angew Chem Int Ed Engl ; 60(24): 13536-13541, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33768597

RESUMO

Brasilicardin A (1) consists of an unusual anti/syn/anti-perhydrophenanthrene skeleton with a carbohydrate side chain and an amino acid moiety. It exhibits potent immunosuppressive activity, yet its mode of action differs from standard drugs that are currently in use. Further pre-clinical evaluation of this promising, biologically active natural product is hampered by restricted access to the ready material, as its synthesis requires both a low-yielding fermentation process using a pathogenic organism and an elaborate, multi-step total synthesis. Our semi-synthetic approach included a) the heterologous expression of the brasilicardin A gene cluster in different non-pathogenic bacterial strains producing brasilicardin A aglycone (5) in excellent yield and b) the chemical transformation of the aglycone 5 into the trifluoroacetic acid salt of brasilicardin A (1 a) via a short and straightforward five-steps synthetic route. Additionally, we report the first preclinical data for brasilicardin A.


Assuntos
Aminoglicosídeos/metabolismo , Engenharia Genética , Imunossupressores/síntese química , Alquil e Aril Transferases/genética , Aminoglicosídeos/síntese química , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imunossupressores/química , Imunossupressores/metabolismo , Imunossupressores/farmacologia , Camundongos , Plasmídeos/genética , Plasmídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Terpenos/química
2.
J Bacteriol ; 202(3)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712280

RESUMO

In all organisms, chromosome replication is regulated mainly at the initiation step. Most of the knowledge about the mechanisms that regulate replication initiation in bacteria has come from studies on rod-shaped bacteria, such as Escherichia coli and Bacillus subtilisStreptomyces is a bacterial genus that is characterized by distinctive features and a complex life cycle that shares some properties with the developmental cycle of filamentous fungi. The unusual lifestyle of streptomycetes suggests that these bacteria use various mechanisms to control key cellular processes. Here, we provide the first insights into the phosphorylation of the bacterial replication initiator protein, DnaA, from Streptomyces coelicolor We suggest that phosphorylation of DnaA triggers a conformational change that increases its ATPase activity and decreases its affinity for the replication origin, thereby blocking the formation of a functional orisome. We suggest that the phosphorylation of DnaA is catalyzed by Ser/Thr kinase AfsK, which was shown to regulate the polar growth of S. coelicolor Together, our results reveal that phosphorylation of the DnaA initiator protein functions as a negative regulatory mechanism to control the initiation of chromosome replication in a manner that presumably depends on the cellular localization of the protein.IMPORTANCE This work provides insights into the phosphorylation of the DnaA initiator protein in Streptomyces coelicolor and suggests a novel bacterial regulatory mechanism for initiation of chromosome replication. Although phosphorylation of DnaA has been reported earlier, its biological role was unknown. This work shows that upon phosphorylation, the cooperative binding of the replication origin by DnaA may be disturbed. We found that AfsK kinase is responsible for phosphorylation of DnaA. Upon upregulation of AfsK, chromosome replication occurred further from the hyphal tip. Orthologs of AfsK are exclusively found in mycelial actinomycetes that are related to Streptomyces and exhibit a complex life cycle. We propose that the AfsK-mediated regulatory pathway serves as a nonessential, energy-saving mechanism in S. coelicolor.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Fosforilação , Origem de Replicação/genética , Streptomyces coelicolor/genética
3.
Antonie Van Leeuwenhoek ; 112(2): 329-330, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30460469

RESUMO

Subsequent to the publication of the above article, it has been noticed that data published in Figure 2A and Figure 2B of this article duplicate images previously published by this research group in the following paper.

4.
Appl Microbiol Biotechnol ; 100(7): 3147-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26637421

RESUMO

Aminocoumarins are potent antibiotics belonging to a relatively small group of secondary metabolites produced by actinomycetes. Genome mining of Catenulispora acidiphila has recently led to the discovery of a gene cluster responsible for biosynthesis of novel aminocoumarins, cacibiocins. However, regulation of the expression of this novel gene cluster has not yet been analyzed. In this study, we identify transcriptional regulators of the cacibiocin gene cluster. Using a heterologous expression system, we show that the CabA and CabR proteins encoded by cabA and cabR genes in the cacibiocin gene cluster control the expression of genes involved in the biosynthesis, modification, regulation, and potentially, efflux/resistance of cacibiocins. CabA positively regulates the expression of cabH (the first gene in the cabHIYJKL operon) and cabhal genes encoding key enzymes responsible for the biosynthesis and halogenation of the aminocoumarin moiety, respectively. We provide evidence that CabA is a direct inducer of cacibiocin production, whereas the second transcriptional factor, CabR, is involved in the negative regulation of its own gene and cabT-the latter of which encodes a putative cacibiocin transporter. We also demonstrate that CabR activity is negatively regulated in vitro by aminocoumarin compounds, suggesting the existence of analogous regulation in vivo. Finally, we propose a model of multilevel regulation of gene transcription in the cacibiocin gene cluster by CabA and CabR.


Assuntos
Actinomycetales/genética , Aminocumarinas/metabolismo , Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Genes Bacterianos , Genoma Bacteriano , Fatores de Transcrição/genética , Actinomycetales/química , Actinomycetales/metabolismo , Sequência de Aminoácidos , Aminocumarinas/química , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clonagem Molecular , Farmacorresistência Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Óperon , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
5.
J Bacteriol ; 196(16): 2901-11, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24914187

RESUMO

Numerous free-living bacteria undergo complex differentiation in response to unfavorable environmental conditions or as part of their natural cell cycle. Developmental programs require the de novo expression of several sets of genes responsible for morphological, physiological, and metabolic changes, such as spore/endospore formation, the generation of flagella, and the synthesis of antibiotics. Notably, the frequency of chromosomal replication initiation events must also be adjusted with respect to the developmental stage in order to ensure that each nascent cell receives a single copy of the chromosomal DNA. In this review, we focus on the master transcriptional factors, Spo0A, CtrA, and AdpA, which coordinate developmental program and which were recently demonstrated to control chromosome replication. We summarize the current state of knowledge on the role of these developmental regulators in synchronizing the replication with cell differentiation in Bacillus subtilis, Caulobacter crescentus, and Streptomyces coelicolor, respectively.


Assuntos
Bacillus subtilis/genética , Caulobacter crescentus/genética , Período de Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/genética , Bacillus subtilis/crescimento & desenvolvimento , Caulobacter crescentus/crescimento & desenvolvimento , Segregação de Cromossomos , Streptomyces coelicolor/crescimento & desenvolvimento
6.
Antonie Van Leeuwenhoek ; 105(5): 951-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705740

RESUMO

During infection of macrophages, Mycobacterium tuberculosis, the pathogen that causes tuberculosis, utilizes fatty acids as a major carbon source. However, little is known about the coordination of the central carbon metabolism of M. tuberculosis with its chromosomal replication, particularly during infection. A recently characterized transcription factor called PrpR is known to directly regulate the genes involved in fatty acid catabolism by M. tuberculosis. Here, we report for the first time that PrpR also regulates the dnaA gene, which encodes the DnaA initiator protein responsible for initiating chromosomal replication. Using cell-free systems and intact cells, we demonstrated an interaction between PrpR and the dnaA promoter region. Moreover, real-time quantitative reverse-transcription PCR analysis revealed that PrpR acts as a transcriptional repressor of dnaA when propionate (a product of odd-chain-length fatty acid catabolism) was used as the sole carbon source. We hypothesize that PrpR may be an important element of the complex regulatory system(s) required for tubercle bacilli to survive within macrophages, presumably coordinating the catabolism of host-derived fatty acids with chromosomal replication.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Ligação a DNA/biossíntese , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Propionatos/metabolismo , Proteínas Repressoras/metabolismo , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real
7.
J Bacteriol ; 193(5): 1273-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193604

RESUMO

We observed movies of replisome trafficking during Streptomyces coelicolor growth. A replisome(s) in the spore served as a replication center(s) until hyphae reached a certain length, when a tip-proximal replisome formed and moved at a fixed distance behind the tip at a speed equivalent to the extension rate of the tip.


Assuntos
Transporte Proteico/fisiologia , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Parede Celular , Replicação do DNA , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Recombinantes de Fusão , Streptomyces coelicolor/citologia , Streptomyces coelicolor/genética
8.
J Bacteriol ; 193(22): 6358-65, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926228

RESUMO

AdpA is a key regulator of morphological differentiation in Streptomyces. In contrast to Streptomyces griseus, relatively little is known about AdpA protein functions in Streptomyces coelicolor. Here, we report for the first time the translation accumulation profile of the S. coelicolor adpA (adpA(Sc)) gene; the level of S. coelicolor AdpA (AdpA(Sc)) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hours (48 to 60 h), and then the signal intensity decreased considerably. AdpA(Sc) specifically binds the adpA(Sc) promoter region in vitro and in vivo, suggesting that its expression is autoregulated; surprisingly, in contrast to S. griseus, the protein presumably acts as a transcriptional activator. We also demonstrate a direct influence of AdpA(Sc) on the expression of several genes whose products play key roles in the differentiation of S. coelicolor: STI, a protease inhibitor; RamR, an atypical response regulator that itself activates expression of the genes for a small modified peptide that is required for aerial growth; and ClpP1, an ATP-dependent protease. The diverse influence of AdpA(Sc) protein on the expression of the analyzed genes presumably results mainly from different affinities of AdpA(Sc) protein to individual promoters.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/genética , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Streptomyces coelicolor/genética , Transativadores/genética
9.
Microbiol Spectr ; 9(3): e0198121, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878326

RESUMO

In members of genus Streptomyces, AdpA is a master transcriptional regulator that controls the expression of hundreds of genes involved in morphological differentiation, secondary metabolite biosynthesis, chromosome replication, etc. However, the function of AdpASv, an AdpA ortholog of Streptomyces venezuelae, is unknown. This bacterial species is a natural producer of chloramphenicol and has recently become a model organism for studies on Streptomyces. Here, we demonstrate that AdpASv is essential for differentiation and antibiotic biosynthesis in S. venezuelae and provide evidence suggesting that AdpASv positively regulates its own gene expression. We speculate that the different modes of AdpA-dependent transcriptional autoregulation observed in S. venezuelae and other Streptomyces species reflect the arrangement of AdpA binding sites in relation to the transcription start site. Lastly, we present preliminary data suggesting that AdpA may undergo a proteolytic processing and we speculate that this may potentially constitute a novel regulatory mechanism controlling cellular abundance of AdpA in Streptomyces. IMPORTANCEStreptomyces are well-known producers of valuable secondary metabolites which include a large variety of antibiotics and important model organisms for developmental studies in multicellular bacteria. The conserved transcriptional regulator AdpA of Streptomyces exerts a pleiotropic effect on cellular processes, including the morphological differentiation and biosynthesis of secondary metabolites. Despite extensive studies, the function of AdpA in these processes remains elusive. This work provides insights into the role of a yet unstudied AdpA ortholog of Streptomyces venezuelae, now considered a novel model organism. We found that AdpA plays essential role in morphological differentiation and biosynthesis of chloramphenicol, a broad-spectrum antibiotic. We also propose that AdpA may undergo a proteolytic processing that presumably constitutes a novel mechanism regulating cellular abundance of this master regulator.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Cloranfenicol/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Regulon , Streptomyces/genética , Fatores de Transcrição/genética
10.
Eng Life Sci ; 21(1-2): 4-18, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33531886

RESUMO

Brasilicardin A (BraA) is a promising immunosuppressive compound produced naturally by the pathogenic bacterium Nocardia terpenica IFM 0406. Heterologous host expression of brasilicardin gene cluster showed to be efficient to bypass the safety issues, low production levels and lack of genetic tools related with the use of native producer. Further improvement of production yields requires better understanding of gene expression regulation within the BraA biosynthetic gene cluster (Bra-BGC); however, the only so far known regulator of this gene cluster is Bra12. In this study, we discovered the protein LysRNt, a novel member of the LysR-type transcriptional regulator family, as a regulator of the Bra-BGC. Using in vitro approaches, we identified the gene promoters which are controlled by LysRNt within the Bra-BGC. Corresponding genes encode enzymes involved in BraA biosynthesis as well as the key Bra-BGC regulator Bra12. Importantly, we provide in vivo evidence that LysRNt negatively affects production of brasilicardin congeners in the heterologous host Amycolatopsis japonicum. Finally, we demonstrate that some of the pathway related metabolites, and their chemical analogs, can interact with LysRNt which in turn affects its DNA-binding activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA