Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(15): 3938-43, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035935

RESUMO

The negatively charged nitrogen vacancy (NV(-)) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV(-) state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.


Assuntos
Fluorescência , Nanodiamantes/química , Nitrogênio/química , Eletricidade Estática , Condutividade Elétrica , Técnicas Eletroquímicas
2.
Nano Lett ; 12(6): 2763-7, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22594309

RESUMO

X-ray absorption spectroscopy and ab initio modeling of the experimental spectra have been used to investigate the effects of surface passivation on the unoccupied electronic states of CdSe quantum dots (QDs). Significant differences are observed in the unoccupied electronic structure of the CdSe QDs, which are shown to arise from variations in specific ligand-surface bonding interactions.


Assuntos
Compostos de Cádmio/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pontos Quânticos , Compostos de Selênio/química , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Ligantes
3.
ACS Nanosci Au ; 3(6): 462-474, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38144705

RESUMO

Surface chemistry of materials that host quantum bits such as diamond is an important avenue of exploration as quantum computation and quantum sensing platforms mature. Interfacing diamond in general and nanoscale diamond (ND) in particular with silica is a potential route to integrate room temperature quantum bits into photonic devices, fiber optics, cells, or tissues with flexible functionalization chemistry. While silica growth on ND cores has been used successfully for quantum sensing and biolabeling, the surface mechanism to initiate growth was unknown. This report describes the surface chemistry responsible for silica bond formation on diamond and uses X-ray absorption spectroscopy (XAS) to probe the diamond surface chemistry and its electronic structure with increasing silica thickness. A modified Stöber (Cigler) method was used to synthesize 2-35 nm thick shells of SiO2 onto carboxylic acid-rich ND cores. The diamond morphology, surface, and electronic structure were characterized by overlapping techniques including electron microscopy. Importantly, we discovered that SiO2 growth on carboxylated NDs eliminates the presence of carboxylic acids and that basic ethanolic solutions convert the ND surface to an alcohol-rich surface prior to silica growth. The data supports a mechanism that alcohols on the ND surface generate silyl-ether (ND-O-Si-(OH)3) bonds due to rehydroxylation by ammonium hydroxide in ethanol. The suppression of the diamond electronic structure as a function of SiO2 thickness was observed for the first time, and a maximum probing depth of ∼14 nm was calculated. XAS spectra based on the Auger electron escape depth was modeled using the NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to support our experimental results. Additionally, resonant inelastic X-ray scattering (RIXS) maps produced by the transition edge sensor reinforces the chemical analysis provided by XAS. Researchers using diamond or high-pressure high temperature (HPHT) NDs and other exotic materials (e.g., silicon carbide or cubic-boron nitride) for quantum sensing applications may exploit these results to design new layered or core-shell quantum sensors by forming covalent bonds via surface alcohol groups.

4.
J Phys Chem Lett ; 13(4): 1147-1158, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084184

RESUMO

Bromination of high-pressure, high-temperature (HPHT) nanodiamond (ND) surfaces has not been explored and can open new avenues for increased chemical reactivity and diamond lattice covalent bond formation. The large bond dissociation energy of the diamond lattice-oxygen bond is a challenge that prevents new bonds from forming, and most researchers simply use oxygen-terminated NDs (alcohols and acids) as reactive species. In this work, we transformed a tertiary-alcohol-rich ND surface to an amine surface with ∼50% surface coverage and was limited by the initial rate of bromination. We observed that alkyl bromide moieties are highly labile on HPHT NDs and are metastable as previously found using density functional theory. The strong leaving group properties of the alkyl bromide intermediate were found to form diamond-nitrogen bonds at room temperature and without catalysts. This robust pathway to activate a chemically inert ND surface broadens the modalities for surface termination, and the unique surface properties of brominated and aminated NDs are impactful to researchers for chemically tuning diamond for quantum sensing or biolabeling applications.

5.
Nano Lett ; 9(6): 2331-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19449878

RESUMO

We report the rational synthesis of nitrogen-doped zinc oxide (ZnO:N) nanowire arrays, and their implementation as photoanodes in photoelectrochemical (PEC) cells for hydrogen generation from water splitting. Dense and vertically aligned ZnO nanowires were first prepared from a hydrothermal method, followed by annealing in ammonia to incorporate N as a dopant. Nanowires with a controlled N concentration (atomic ratio of N to Zn) up to approximately 4% were prepared by varying the annealing time. X-ray photoelectron spectroscopy studies confirm N substitution at O sites in ZnO nanowires up to approximately 4%. Incident-photon-to-current-efficiency measurements carried out on PEC cell with ZnO:N nanowire arrays as photoanodes demonstrate a significant increase of photoresponse in the visible region compared to undoped ZnO nanowires prepared at similar conditions. Mott-Schottky measurements on a representative 3.7% ZnO:N sample give a flat-band potential of -0.58 V, a carrier density of approximately 4.6 x 10(18) cm(-3), and a space-charge layer of approximately 22 nm. Upon illumination at a power density of 100 mW/cm(2) (AM 1.5), water splitting is observed in both ZnO and ZnO:N nanowires. In comparison to ZnO nanowires without N-doping, ZnO:N nanowires show an order of magnitude increase in photocurrent density with photo-to-hydrogen conversion efficiency of 0.15% at an applied potential of +0.5 V (versus Ag/AgCl). These results suggest substantial potential of metal oxide nanowire arrays with controlled doping in PEC water splitting applications.


Assuntos
Nanofios/química , Nitrogênio/química , Fotólise , Água/química , Óxido de Zinco/química
6.
Small ; 5(1): 104-11, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19040214

RESUMO

Dense and aligned TiO2 nanorod arrays are fabricated using oblique-angle deposition on indium tin oxide (ITO) conducting substrates. The TiO2 nanorods are measured to be 800-1100 nm in length and 45-400 nm in width with an anatase crystal phase. Coverage of the ITO is extremely high with 25 x 10(6) mm(-2) of the TiO2 nanorods. The first use of these dense TiO2 nanorod arrays as working electrodes in photoelectrochemical (PEC) cells used for the generation of hydrogen by water splitting is demonstrated. A number of experimental techniques including UV/Vis absorption spectroscopy, X-ray diffraction, high-resolution scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectrochemistry are used to characterize their structural, optical, and electronic properties. Both UV/Vis and incident-photon-to-current-efficiency measurements show their photoresponse in the visible is limited but with a marked increase around approximately 400 nm. Mott-Schottky measurements give a flat-band potential (V(FB)) of +0.20 V, a carrier density of 4.5 x 10(17) cm(-3), and a space-charge layer of 99 nm. Overall water splitting is observed with an applied overpotential at 1.0 V (versus Ag/AgCl) with a photo-to-hydrogen efficiency of 0.1%. The results suggest that these dense and aligned one-dimensional TiO2 nanostructures are promising for hydrogen generation from water splitting based on PEC cells.


Assuntos
Nanotubos/química , Titânio/química , Água/química , Técnicas Eletroquímicas , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Microscopia Eletrônica de Varredura , Processos Fotoquímicos , Temperatura , Difração de Raios X
7.
J Phys Chem B ; 110(50): 25288-96, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17165974

RESUMO

Metal oxide nanostructures hold great potential for photovoltaic (PV), photoelectrochemical (PEC), and photocatalytic applications. Whereas thin films of various materials of both nanoparticle and nanorod morphologies have been widely investigated, there have been few inquiries into nanodisk structures. Here, we report the synthesis of ultrathin WO3 nanodisks using a wet chemical route with poly(ethylene glycol) (PEG) as a surface modulator. The reported nanodisk structure is based on the interaction of the nonionic 10000 g/mol PEG molecules with tungsten oxoanion precursors. The WO3 nanostructures formed are dominated by very thin disks with dimensions on the nanometer to micrometer scale. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the structures to have dimensions on the order of 350-1000 nm in length, 200-750 nm in width, and 7-18 nm in thickness and possessing textured single-crystalline features. A number of analytical techniques were used to characterize the WO3 nanodisks, including selected-area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), Raman scattering spectroscopy, UV-visible spectrophotometry, and cyclic voltammetry (CV). The growth of the WO3 nanodisks was inhibited in the [010] crystal direction, leading to ultrathin morphologies in the monoclinic crystal phase. The large flat surface area and high aspect ratio of the WO3 nanodisks are potentially useful in PEC cells for hydrogen production via direct water splitting, as has been demonstrated in a preliminary experiment with external bias.


Assuntos
Membranas Artificiais , Nanoestruturas/química , Óxidos/química , Óxidos/síntese química , Polietilenoglicóis/química , Tungstênio/química , Eletroquímica , Nanotecnologia/métodos , Tamanho da Partícula , Fotoquímica , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta , Propriedades de Superfície , Difração de Raios X
8.
J Phys Chem B ; 110(11): 5779-89, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16539525

RESUMO

Quantum dots (QDs) have been increasingly used in biolabeling recently as their advantages over molecular fluorophores have become clear. For bioapplications QDs must be water-soluble and buffer stable, making their synthesis challenging and time-consuming. A simple aqueous synthesis of silica-capped, highly fluorescent CdTe quantum dots has been developed. CdTe QDs are advantageous as the emission can be tuned to the near-infrared where tissue absorption is at a minimum, while the silica shell can prevent the leakage of toxic Cd(2+) and provide a surface for easy conjugation to biomolecules such as proteins. The presence of a silica shell of 2-5 nm in thickness has been confirmed by transmission electron microscopy and atomic force microscopy measurements. Photoluminescence studies show that the silica shell results in greatly increased photostability in Tris-borate-ethylenediaminetetraacetate and phosphate-buffered saline buffers. To further improve their biocompatibility, the silica-capped QDs have been functionalized with poly(ethylene glycol) and thiol-terminated biolinkers. Through the use of these linkers, antibody proteins were successfully conjugated as confirmed by agarose gel electrophoresis. Streptavidin-maleimide and biotinylated polystyrene microbeads confirmed the bioactivity and conjugation specificity of the thiolated QDs. These functionalized, silica-capped QDs are ideal labels, easily synthesized, robust, safe, and readily conjugated to biomolecules while maintaining bioactivity. They are potentially useful for a number of applications in biolabeling and imaging.


Assuntos
Compostos de Cádmio/química , Imunoglobulina G/química , Nanotecnologia/métodos , Pontos Quânticos , Dióxido de Silício/química , Compostos de Sulfidrila/química , Telúrio/química , Biotinilação , Ácidos Bóricos/química , Compostos de Cádmio/síntese química , Ácido Edético/química , Eletroforese em Gel de Ágar , Imunoglobulina G/metabolismo , Maleimidas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Polietilenoglicóis/química , Poliestirenos/química , Cloreto de Sódio/química , Solubilidade , Estreptavidina/química , Propriedades de Superfície , Trometamina/química , Água/química
9.
J Phys Chem C Nanomater Interfaces ; 118(46): 26695-26702, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25436035

RESUMO

We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

10.
Chem Mater ; 22(9): 2814-2821, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20473338

RESUMO

In-situ TOPO decomposition was accomplished by applying a vacuum at elevated temperatures to a precursor solution in the presence of oxygen, leading TOPO to oxidize to di-n-octylphosphinic acid (DOPA) and octylphosphonic acid (OPA). The mixed ligand system of tetradecylphosphonic acid (TDPA), DOPA and OPA produced CdSe QRs on the order of 4 nm in diameter and 20 nm in length. Solvent and ligand identification was performed by mass spectrometry and (31)P nuclear magnetic resonance spectroscopy. Transmission electron microscopy (TEM) was utilized to determine the morphology, size and crystal growth of the CdSe QRs. This method of CdSe QR synthesis is unique in that the phosphonic acids responsible for anisotropic growth are formed in situ, prior to the nucleation and growth of the nanorods. Without the oxidation of TOPO, CdSe quantum dots (QDs) were synthesized instead, as reported previously. This discovery reinforces the efficacy of DOPA and OPA molecules as critical ligands in the formation of 1-dimensional (1D) nanostructures.

11.
J Phys Chem C Nanomater Interfaces ; 114(17): 7793-7805, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20473339

RESUMO

Quantum dot (QD) fluorescence is effectively quenched at low concentration by nitroxides bearing amine or carboxylic acid ligands. The association constants and fluorescence quenching of CdSe QDs with these derivatized nitroxides have been examined using electron paramagnetic resonance (EPR) and fluorescence spectroscopy. The EPR spectra in the non-protic solvent toluene are extremely sensitive to intermolecular and intramolecular hydrogen bonding of the functionalized nitroxides. Fluorescence measurements show that quenching of QD luminescence is nonlinear, with a strong dependence on the distance between the radical and the QD. The quenched fluorescence is restored when the surface-bound nitroxides are converted to hydroxylamines by mild reducing agents, or trapped by carbon radicals to form alkoxyamines. EPR studies indicate that photoreduction of the nitroxide occurs in toluene solution upon photoexcitation at 365 nm. However, photolysis in benzene solution gives no photoreduction, suggesting that photoreduction in toluene is independent of the quenching mechanism. The fluorescence quenching of QDs by nitroxide binding is a reversible process.

12.
ACS Nano ; 3(2): 325-30, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19236067

RESUMO

The exciton binding energy (EBE) in CdSe quantum dots (QDs) has been determined using X-ray spectroscopy. Using X-ray absorption and photoemission spectroscopy, the conduction band (CB) and valence band (VB) edge shifts as a function of particle size have been determined and combined to obtain the true band gap of the QDs (i.e., without an exciton). These values can be compared to the excitonic gap obtained using optical spectroscopy to determine the EBE. The experimental EBE results are compared with theoretical calculations on the EBE and show excellent agreement.

13.
ACS Nano ; 2(10): 2143-53, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19206461

RESUMO

The influence of excitation wavelength and embedding media on fluorescence blinking statistics of 4 nm x 20 nm cadmium selenide (CdSe) nanorods is investigated. Photon antibunching (PAB) experiments confirm nonclassical emission from single CdSe nanorods that exhibit a radiative lifetime of 26 +/- 13 ns. The blinking data show behaviors that can be categorized into two classes: excitation near the energy of the band gap and at energies exceeding 240 meV above the band gap. Excitation at the band gap energy (lambda >or= 560 nm) results in more pronounced "on" time probabilities in the distribution of "on" and "off" events, while those resulting from excitation exceeding the band gap by 240 meV or more (lambda

Assuntos
Compostos de Cádmio/química , Cristalização/métodos , Medições Luminescentes/métodos , Modelos Químicos , Nanotecnologia/métodos , Nanotubos/química , Compostos de Selênio/química , Espectrometria de Fluorescência/métodos , Simulação por Computador , Nanotubos/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA