Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Anesth Analg ; 133(1): 263-273, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929393

RESUMO

BACKGROUND: Mechanical ventilation injures lungs, but there are currently no reliable methods for detecting early injury. We therefore evaluated whether exhaled pentanal, a lipid peroxidation product, might be a useful breath biomarker for stretch-induced lung injury in rats. METHODS: A total of 150 male Sprague-Dawley rats were investigated in 2 substudies. The first randomly assigned 75 rats to 7 hours of mechanical ventilation at tidal volumes of 6, 8, 12, 16, and 20 mL·kg-1. The second included 75 rats. A reference group was ventilated at a tidal volume of 6 mL·kg-1 for 10 hours 4 interventional groups were ventilated at a tidal volume of 6 mL·kg-1 for 1 hour, and then for 0.5, 1, 2, or 3 hours at a tidal volume of 16 mL.kg-1 before returning to a tidal volume of 6 mL·kg-1 for additional 6 hours. Exhaled pentanal was monitored by multicapillary column-ion mobility spectrometry. The first substudy included cytokine and leukocyte measurements in blood and bronchoalveolar fluid, histological assessment of the proportion of alveolar space, and measurements of myeloperoxidase activity in lung tissue. The second substudy included measurements of pentanal in arterial blood plasma, cytokine and leukocyte concentrations in bronchoalveolar fluid, and cleaved caspase 3 in lung tissue. RESULTS: Exhaled pentanal concentrations increased by only 0.5 ppb·h-1 (95% confidence interval [CI], 0.3-0.6) when rats were ventilated at 6 mL·kg-1. In contrast, exhaled pentanal concentrations increased substantially and roughly linearly at higher tidal volumes, up to 3.1 ppb·h-1 (95% CI, 2.3-3.8) at tidal volumes of 20 mL·kg-1. Exhaled pentanal increased at average rates between 1.0 ppb·h-1 (95% CI, 0.3-1.7) and 2.5 ppb·h-1 (95% CI, 1.4-3.6) after the onset of 16 mL·kg-1 tidal volumes and decreased rapidly by a median of 2 ppb (interquartile range [IQR], 0.9-3.2), corresponding to a 38% (IQR, 31-43) reduction when tidal volume returned to 6 mL·kg-1. Tidal volume, inspiratory pressure, and mechanical power were positively associated with pentanal exhalation. Exhaled and plasma pentanal were uncorrelated. Alveolar space decreased and inflammatory markers in bronchoalveolar lavage fluid increased in animals ventilated at high tidal volumes. Short, intermittent ventilation at high tidal volumes for up to 3 hours increased neither inflammatory markers in bronchoalveolar fluid nor the proportion of cleaved caspase 3 in lung tissue. CONCLUSIONS: Exhaled pentanal is a potential biomarker for early detection of ventilator-induced lung injury in rats.


Assuntos
Aldeídos/metabolismo , Expiração/fisiologia , Respiração Artificial/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Aldeídos/análise , Anestésicos Inalatórios/administração & dosagem , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Expiração/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Sevoflurano/administração & dosagem , Volume de Ventilação Pulmonar/efeitos dos fármacos , Volume de Ventilação Pulmonar/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
2.
Molecules ; 26(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067078

RESUMO

High inspired oxygen during mechanical ventilation may influence the exhalation of the previously proposed breath biomarkers pentanal and hexanal, and additionally induce systemic inflammation. We therefore investigated the effect of various concentrations of inspired oxygen on pentanal and hexanal exhalation and serum interleukin concentrations in 30 Sprague Dawley rats mechanically ventilated with 30, 60, or 93% inspired oxygen for 12 h. Pentanal exhalation did not differ as a function of inspired oxygen but increased by an average of 0.4 (95%CI: 0.3; 0.5) ppb per hour, with concentrations doubling from 3.8 (IQR: 2.8; 5.1) ppb at baseline to 7.3 (IQR: 5.0; 10.8) ppb after 12 h. Hexanal exhalation was slightly higher at 93% of inspired oxygen with an average difference of 0.09 (95%CI: 0.002; 0.172) ppb compared to 30%. Serum IL-6 did not differ by inspired oxygen, whereas IL-10 at 60% and 93% of inspired oxygen was greater than with 30%. Both interleukins increased over 12 h of mechanical ventilation at all oxygen concentrations. Mechanical ventilation at high inspired oxygen promotes pulmonary lipid peroxidation and systemic inflammation. However, the response of pentanal and hexanal exhalation varies, with pentanal increasing by mechanical ventilation, whereas hexanal increases by high inspired oxygen concentrations.


Assuntos
Aldeídos/farmacologia , Expiração/efeitos dos fármacos , Oxigênio/farmacologia , Respiração Artificial , Animais , Testes Respiratórios , Citocinas/sangue , Inflamação/patologia , Masculino , Pressão Parcial , Ratos Sprague-Dawley
3.
Biomed Chromatogr ; 33(8): e4540, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30924939

RESUMO

The combination of propofol, ketamine and rocuronium can be used for anesthesia of ventilated rats. However, reliable pharmacokinetic models of these drugs have yet to be developed in rats, and consequently optimal infusion strategies are also unknown. Development of pharmacokinetic models requires repeated measurements of drug concentrations. In small animals, samples must be tiny to avoid excessing blood extraction. We therefore developed a drug assay system using high-performance liquid chromatography coupled with quadrupole mass spectrometry that simultaneously determines the concentration of all three drugs in just 10 µL rat plasma. We established a plasma extraction protocol, using acetonitrile as the precipitating reagent. Calibration curves were linear with R2 = 0.99 for each drug. Mean recovery from plasma was 91-93% for propofol, 89-93% for ketamine and 90-92% for rocuronium. The assay proved to be accurate for propofol 4.1-8.3%, ketamine 1.9-7.8% and rocuronium -3.6-4.7% relative error. The assay was also precise; the intra-day precisions were propofol 2.0-4.0%, ketamine 2.7-2.9% and rocuronium 2.9-3.3% relative standard deviation. Finally, the method was successfully applied to measurement the three drugs in rat plasma samples. Mean plasma concentrations with standard deviations were propofol 2.0 µg/mL ±0.5%, ketamine 3.9 µg/mL ±1.0% and rocuronium 3.2 µg/mL ±0.8% during ventilation.


Assuntos
Cromatografia Líquida/métodos , Ketamina/sangue , Espectrometria de Massas/métodos , Propofol/sangue , Rocurônio/sangue , Animais , Ketamina/química , Ketamina/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Projetos Piloto , Propofol/química , Propofol/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Rocurônio/química , Rocurônio/farmacocinética
4.
Anesthesiology ; 122(1): 117-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25170570

RESUMO

BACKGROUND: Multicapillary column ion-mobility spectrometry (MCC-IMS) may identify volatile components in exhaled gas. The authors therefore used MCC-IMS to evaluate exhaled gas in a rat model of sepsis, inflammation, and hemorrhagic shock. METHODS: Male Sprague-Dawley rats were anesthetized and ventilated via tracheostomy for 10 h or until death. Sepsis was induced by cecal ligation and incision in 10 rats; a sham operation was performed in 10 others. In 10 other rats, endotoxemia was induced by intravenous administration of 10 mg/kg lipopolysaccharide. In a final 10 rats, hemorrhagic shock was induced to a mean arterial pressure of 35 ± 5 mmHg. Exhaled gas was analyzed with MCC-IMS, and volatile compounds were identified using the BS-MCC/IMS-analytes database (Version 1209; B&S Analytik, Dortmund, Germany). RESULTS: All sham animals survived the observation period, whereas mean survival time was 7.9 h in the septic animals, 9.1 h in endotoxemic animals, and 2.5 h in hemorrhagic shock. Volatile compounds showed statistically significant differences in septic and endotoxemic rats compared with sham rats for 3-pentanone and acetone. Endotoxic rats differed significantly from sham for 1-propanol, butanal, acetophenone, 1,2-butandiol, and 2-hexanone. Statistically significant differences were observed between septic and endotoxemic rats for butanal, 3-pentanone, and 2-hexanone. 2-Hexanone differed from all other groups in the rats with shock. CONCLUSIONS: Breath analysis of expired organic compounds differed significantly in septic, inflammation, and sham rats. MCC-IMS of exhaled breath deserves additional study as a noninvasive approach for distinguishing sepsis from inflammation.


Assuntos
Testes Respiratórios/métodos , Inflamação/metabolismo , Sepse/metabolismo , Análise Espectral/métodos , Compostos Orgânicos Voláteis/metabolismo , Animais , Modelos Animais de Doenças , Expiração , Inflamação/diagnóstico , Íons , Masculino , Ratos , Ratos Sprague-Dawley , Sepse/diagnóstico , Choque Hemorrágico/metabolismo
5.
Exp Mol Pathol ; 99(2): 189-97, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26116814

RESUMO

BACKGROUND & AIMS: Melatonin has been demonstrated to reduce liver damage in different models of stress. However, there is only limited information on the impact of this hormone on hepatic gene expression. The aim of this study was, to investigate the influence of melatonin or the melatonergic agonist ramelteon on hepatic gene expression profiles after haemorrhagic shock using a whole genome microarray analysis. METHODS: Male Sprague-Dawley rats (200-300 g, n=4/group) underwent haemorrhagic shock (mean arterial pressure 35±5 mmHg). After 90 min of shock, animals were resuscitated with shed blood and Ringer's and treated with vehicle (5% dimethyl sulfoxide), melatonin or ramelteon (each 1.0 mg/kg intravenously). Sham-operated animals were treated likewise but did not undergo haemorrhage. After 2 h of reperfusion, the liver was harvested, and a whole genome microarray analysis was performed. Functional gene expression profiles were determined using the Panther® classification system; promising candidate genes were evaluated by quantitative polymerase chain reaction (PCR). RESULTS: Microarray and PCR data showed a good correlation (r(2)=0.84). A strong influence of melatonin on receptor mediated signal transduction was revealed using the functional gene expression profile analysis, whereas ramelteon mainly influenced transcription factors. Shock-induced upregulation of three candidate genes with relevant functions for hepatocytes (ppp1r15a, dusp5, rhoB) was significantly reduced by melatonin (p<0.05 vs. shock/vehicle), but not by ramelteon. Two genes previously known as haemorrhage-induced (il1b, s100a8) were transcriptionally repressed by both drugs. CONCLUSIONS: Melatonin and ramelteon appear to induce specific hepatic gene expression profiles after haemorrhagic shock in rats. The observed differences between both substances are likely to be attributable to a distinct mechanism of action in these agents.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Indenos/farmacologia , Fígado/efeitos dos fármacos , Melatonina/farmacologia , Choque Hemorrágico/genética , Animais , Antioxidantes/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Fígado/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/patologia , Células Tumorais Cultivadas
6.
Anal Bioanal Chem ; 407(13): 3763-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25808025

RESUMO

The analysis of exhaled metabolites has become a promising field of research in recent decades. Several volatile organic compounds reflecting metabolic disturbance and nutrition status have even been reported. These are particularly important for long-term measurements, as needed in medical research for detection of disease progression and therapeutic efficacy. In this context, it has become urgent to investigate the effect of fasting and glucose treatment for breath analysis. In the present study, we used a model of ventilated rats that fasted for 12 h prior to the experiment. Ten rats per group were randomly assigned for continuous intravenous infusion without glucose or an infusion including 25 mg glucose per 100 g per hour during an observation period of 12 h. Exhaled gas was analysed using multicapillary column ion-mobility spectrometry. Analytes were identified by the BS-MCC/IMS database (version 1209; B & S Analytik, Dortmund, Germany). Glucose infusion led to a significant increase in blood glucose levels (p < 0.05 at 4 h and thereafter) and cardiac output (p < 0.05 at 4 h and thereafter). During the observation period, 39 peaks were found collectively. There were significant differences between groups in the concentration of ten volatile organic compounds: p < 0.001 at 4 h and thereafter for isoprene, cyclohexanone, acetone, p-cymol, 2-hexanone, phenylacetylene, and one unknown compound, and p < 0.001 at 8 h and thereafter for 1-pentanol, 1-propanol, and 2-heptanol. Our results indicate that for long-term measurement, fasting and the withholding of glucose could contribute to changes of volatile metabolites in exhaled air.


Assuntos
Glicemia/metabolismo , Testes Respiratórios/métodos , Expiração/fisiologia , Jejum/metabolismo , Glucose/administração & dosagem , Compostos Orgânicos Voláteis/análise , Animais , Gasometria/métodos , Masculino , Ratos , Ratos Sprague-Dawley
7.
Crit Care Med ; 42(1): e22-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24145838

RESUMO

OBJECTIVES: Melatonin has been demonstrated to improve survival after experimental sepsis via antioxidant effects. Yet, recent evidence suggests that this protective capacity may also rely on melatonin receptor activation. Therefore, the present study was designed to investigate whether selective melatonin receptor-agonist ramelteon may influence survival and immune response in a model of polymicrobial sepsis in rats, wild-type and melatonin receptor MT1/MT2 double knockout mice. DESIGN: Prospective, randomized, controlled study. SETTING: University research laboratory. SUBJECTS: Male Sprague-Dawley rats (200-250 g) and male C3H/HeN wild-type and MT1/MT2 receptor knockout mice (20-22 g). INTERVENTIONS: Animals underwent cecal ligation and incision and remained anesthetized for evaluation of survival for 12 hours (rats: n = 15 per group) or 15 hours (mice: n = 10 per group). Analysis of immune response by means of enzyme-linked immunosorbent assay was performed before and 5 hours after cecal ligation and incision (rats only; n = 5 per group). After induction of sepsis, animals were treated IV with vehicle, different doses of melatonin (rats: 0.01/0.1/1.0/10 mg/kg; mice: 1.0 mg/kg), ramelteon, melatonin receptor-antagonist luzindole, ramelteon + luzindole, or melatonin + luzindole (each 1.0 mg/kg). Sham controls underwent laparotomy but not cecal ligation and incision. MEASUREMENTS AND MAIN RESULTS: Compared with vehicle, administration of ramelteon or melatonin significantly improved median survival time in rats (sepsis/melatonin [0.1 mg/kg], 554 min, [1.0 mg/kg] 570 min, [10 mg/kg] 579 min; sepsis/ramelteon, 468 min; each p < 0.001 vs sepsis/vehicle, 303 min) and wild-type mice (sepsis/melatonin, 781 min; sepsis/ramelteon, 701 min; both p < 0.001 vs sepsis/vehicle, 435 min). This effect was completely antagonized by coadministration of luzindole in all groups. Melatonin, ramelteon, or luzindole had no significant effect on survival time in knockout mice. Significantly elevated concentrations of tumor necrosis factor-α, interleukin-6, and interleukin-10 were observed 5 hours after cecal ligation and incision in rats (p < 0.05 vs baseline and corresponding sham); neither ramelteon nor melatonin treatment significantly affected immune response. CONCLUSIONS: Melatonin receptors mediate improvements of survival after polymicrobial sepsis in rats and mice; this effect appears to be independent from major alterations of cytokine release.


Assuntos
Receptores de Melatonina/fisiologia , Sepse/fisiopatologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Indenos/farmacologia , Interleucina-10/sangue , Interleucina-6/sangue , Masculino , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/antagonistas & inibidores , Receptor MT1 de Melatonina/fisiologia , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/antagonistas & inibidores , Receptor MT2 de Melatonina/fisiologia , Receptores de Melatonina/agonistas , Receptores de Melatonina/antagonistas & inibidores , Sepse/mortalidade , Triptaminas/farmacologia , Fator de Necrose Tumoral alfa/sangue
8.
Inflamm Res ; 63(12): 1023-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25352055

RESUMO

OBJECTIVE: Melatonin is known to influence immune functions and to ameliorate outcome after septic challenge but it is unknown whether this is mediated by melatonin receptor activation. This study aimed to elucidate molecular differences in spleen and ex vivo splenocytes of wild-type (WT) and melatonin receptor double knockout mice (KO) after polymicrobial sepsis. SUBJECTS AND METHODS: C3H/HeN wild-type and MT1-/-/MT2-/- mice underwent sham operation or cecum ligation and incision (CLI) and remained anesthetized for 1 h. Splenocytes were isolated and treated in culture with physiological melatonin concentrations (1 nM). RESULTS: Plasma TNFα levels were consistently high after 1 h of CLI. Basal circulating leukocyte numbers were slightly higher in KO animals. We detected transcriptional differences in splenocytes of the knockout strain concerning proinflammatory mediators. Expression levels of IL-1ß, IL-2, CXCR2, L-Selectin, TNFα, CXCL2 and ICAM-1 were strongly increased in splenocytes of KO mice. Splenocytes of KO mice displayed reduced ERK and p38 as well as increased JNK phosphorylation. None of the analyzed factors were influenced by melatonin in the culture medium. CONCLUSIONS: The results of this study indicate an increased proinflammatory status of mice deficient in both membrane-bound melatonin receptors reflected by altered activation of MAPK cascades and transcriptional activation of proinflammatory mediators.


Assuntos
Deleção de Genes , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética , Sepse/metabolismo , Sepse/microbiologia , Baço/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Primers do DNA/química , Ensaio de Imunoadsorção Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Sistema Imunitário , Inflamação , Contagem de Leucócitos , Melatonina/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Dados de Sequência Molecular , Fosforilação , Transdução de Sinais , Baço/citologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Exp Mol Pathol ; 97(3): 565-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25446843

RESUMO

BACKGROUND & AIMS: Melatonin's hepatoprotective actions have numerously been demonstrated in the past but the underlying molecular mechanisms are widely unknown. For a better understanding of melatonin's effects on hepatic stress response this study aimed to elucidate alterations in oxidative stress, unfolded protein response and acute phase response in septic mice. METHODS: Male C3H/HeN mice underwent sham operation or cecal ligation and incision and remained anesthetized for 5h. Production of reactive oxygen species was determined by electron spin resonance spectroscopy. Protein and mRNA expression levels were determined by western blot analysis and quantitative real-time PCR, respectively. RESULTS: Production of reactive oxygen species was strongly increased in the aorta and liver after 5h of polymicrobial sepsis which was entirely inhibited by treatment with melatonin. SOD-1 levels did not differ between the groups. Sepsis also induced the upregulation of VCAM-1 and ICAM-1 independent of melatonin treatment but probably regulated via ERK1/2 signaling. Melatonin triggered the transcriptional upregulation of PERK in septic animals which seems to be independent on ERK1/2 signaling and NR4A1 activation. Melatonin therapy also engendered an increased expression of CHOP, but apoptosis was not initiated. Furthermore, sepsis reduced the expression of the transcription factor CREBH which was entirely suppressed by melatonin. CONCLUSIONS: This study gives new insight into the mechanisms by which melatonin might confer its hepatoprotective actions during polymicrobial sepsis. The results clearly show the melatonin-mediated amelioration of oxidative stress as well as alterations in the cellular stress mechanisms via the unfolded protein response and the acute phase response.


Assuntos
Antioxidantes/farmacologia , Fígado/efeitos dos fármacos , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sepse/patologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Western Blotting , Modelos Animais de Doenças , Espectroscopia de Ressonância de Spin Eletrônica , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Reação em Cadeia da Polimerase em Tempo Real , Sepse/metabolismo
10.
J Chromatogr Sci ; 59(2): 165-174, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33302294

RESUMO

Fosfomycin is an antibiotic with a broad spectrum of activity against many multidrug-resistant bacterial strains. It is mainly excreted unchanged by the kidneys, and its half-life therefore depends on kidney function which varies considerably among individuals, and within individuals over time. Proper fosfomycin dosing thus depends on assaying blood concentration of the drug. We developed and validated a simple, sensitive and specific chromatography assay, which was coupled to electrospray ionization mass spectrometry for determination of fosfomycin. Separation of fosfomycin was based on the method of the hydrophilic interaction liquid chromatography; specifically, plasma and dialysate samples were acidified and the protein precipitated with acetonitrile. The calibration curves showed excellent coefficients of determination (R2 > 0.999) over the relevant concentration range of 25-700 µg/mL. Intraday precision was 1.1-1.2% and accuracy was -5.9% to 0.9% for quality control samples. Interday precision was 2.9-3.4% and accuracy was -3.7% to 5.5%. Extraction recovery was ≥87% and matrix effects ranged from 2.2% to 4.3%. After laboratory validation, the method was successfully applied to clinical samples.


Assuntos
Cromatografia Líquida/métodos , Fosfomicina/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Soluções para Diálise , Estabilidade de Medicamentos , Fosfomicina/análise , Fosfomicina/química , Fosfomicina/farmacocinética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
J Breath Res ; 15(1): 016003, 2020 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-33103661

RESUMO

Inflammation may alter volatile organic compounds (VOCs) in exhaled breath. We therefore used ion mobility spectrometry (IMS) to evaluate exhaled breath components in two non-infectious inflammatory models. Fifty male Sprague Dawley rats were anesthetized and ventilated for 24 h. Five treatments were randomly assigned: (1) lipopolysaccharide low dose [5 mg/kg]; (2) lipopolysaccharide high dose [10 mg/kg]; (3) alpha toxin low dose [40 µg/kg]; (4) alpha toxin high dose [80 µg/kg]; and, (5) NaCl 0.9% as control group. Gas was sampled from the expiratory line of the ventilator every 20 min and analyzed with IMS combined with a multi-capillary column. VOCs were identified by comparison with an established database. Survival analysis was performed by log-rank test, other analyses by one-way or paired ANOVA-tests and post-hoc analysis according to Holm-Sidak. Rats given NaCl and low-dose alpha toxin survived 24 h. The median survival time in alpha toxin high-dose group was 23 (95%-confidence interval (CI): 21, 24) h. In contrast, the median survival time in rats given high-dose lipopolysaccharide was 12 (95% CI: 9, 14) and only 13 (95% CI: 10, 16) h in those given high-dose lipopolysaccharide. 73 different VOCs were detected, of which 35 were observed only in the rats, 38 could be found both in the blank measurements of ventilator air and in the exhaled air of the rats. Forty-nine of the VOCs were identifiable from a registry of compounds. Exhaled volatile compounds were comparable in each group before injection of lipopolysaccharide and alpha toxin. In the LPS groups, 1-pentanol increased and 2-propanol decreased. After alpha toxin treatment, 1-butanol and 1-pentanol increased whereas butanal and isopropylamine decreased. Induction of a non-infectious systemic inflammation (niSI) by lipopolysaccharide and alpha toxin changes VOCs in exhaled breath. Exhalome analysis may help identify niSI.


Assuntos
Toxinas Bacterianas/administração & dosagem , Proteínas Hemolisinas/administração & dosagem , Inflamação/patologia , Ventilação Pulmonar , Compostos Orgânicos Voláteis/análise , Animais , Análise Química do Sangue , Testes Respiratórios , Citocinas/sangue , Expiração , Hemodinâmica , Estimativa de Kaplan-Meier , Lipopolissacarídeos/administração & dosagem , Masculino , Ratos Sprague-Dawley , Análise de Sobrevida
12.
Metabolites ; 10(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549262

RESUMO

Systemic inflammation alters the composition of exhaled breath, possibly helping clinicians diagnose conditions such as sepsis. We therefore evaluated changes in exhaled breath of rats given tumor necrosis factor-alpha (TNF-α). Thirty male Sprague-Dawley rats were randomly assigned to three groups (n = 10 each) with intravenous injections of normal saline (control), 200 µg·kg-1 bodyweight TNF-α (TNF-α-200), or 600 µg·kg-1 bodyweight TNF-α (TNF-α-600), and were observed for 24 h or until death. Animals were ventilated with highly-purified synthetic air to analyze exhaled air by multicapillary column-ion mobility spectrometry. Volatile organic compounds (VOCs) were identified from a database. We recorded blood pressure and cardiac output, along with cytokine plasma concentrations. Control rats survived the 24 h observation period, whereas mean survival time decreased to 22 h for TNF-α-200 and 23 h for TNF-α-600 rats. Mean arterial pressure decreased in TNF-α groups, whereas IL-6 increased, consistent with mild to moderate inflammation. Hundreds of VOCs were detected in exhalome. P-cymol increased by a factor-of-two 4 h after injection of TNF-α-600 compared to the control and TNF-α-200. We found that 1-butanol and 1-pentanol increased in both TNF-α groups after 20 h compared to the control. As breath analysis distinguishes between two doses of TNF-α and none, we conclude that it might help clinicians identify systemic inflammation.

13.
Crit Care Med ; 36(10): 2863-70, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18766086

RESUMO

OBJECTIVE: Melatonin may attenuate organ damage via direct antioxidative properties, and was recently demonstrated to reduce cardiac and hepatic injury through receptor-dependent effects. However, the relevance of an isolated activation of melatonin receptors for organ protection, excluding direct antioxidant effects, has not been established yet. This study was designed to investigate whether therapy with melatonin receptor agonist and hypnotic substance ramelteon may improve liver function, hepatic perfusion, and hepatic integrity after hemorrhagic shock in rat. DESIGN: Prospective, randomized, controlled study. SETTING: University research laboratory. SUBJECTS: Male Sprague-Dawley rats (n = 10 per group). INTERVENTIONS: Animals underwent hemorrhagic shock (mean arterial pressure 35 +/- 5 mm Hg for 90 mins) and were resuscitated with shed blood and Ringer's lactate (2 hrs). At the end of shock, animals were treated with ramelteon (1.0 mg/kg intravenously), melatonin receptor antagonist luzindole plus ramelteon (each 1.0 mg/kg intravenously), or vehicle. MEASUREMENTS AND MAIN RESULTS: In vitro, ramelteon displayed no relevant antioxidant capacity in an 2,2'-Azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) assay, compared with melatonin. In vivo, liver function was assessed by plasma disappearance rate of indocyanine green, and intravital microscopy was performed for evaluation of hepatic perfusion index, nicotinamide adenine dinucleotide phosphate autofluorescence, and hepatic integrity. Compared with vehicle controls, ramelteon therapy significantly improved plasma disappearance rate of indocyanine green (7.89 +/- 2.12% vs. 13.67 +/- 2.51%; p = 0.006), hepatic perfusion index (352.04 +/- 111.78 pl/sec/mm vs. 848.81 +/- 181.38 pl/sec/mm; p = 0.002), nicotinamide adenine dinucleotide phosphate autofluorescence and hepatocellular injury. Coadministration of luzindole abolished the protective effect of ramelteon with respect to liver function and nicotinamide adenine dinucleotide phosphate autofluorescence. CONCLUSIONS: Ramelteon therapy improves liver function, hepatic perfusion, and hepatocellular integrity after hemorrhagic shock in rat. This demonstrates that an isolated activation of melatonin receptors may be sufficient for organ protection, independent from direct antioxidant effects. The hypnotic ramelteon could thus play an interesting role in future sedation concepts for critical care patients.


Assuntos
Indenos/farmacologia , Circulação Hepática/efeitos dos fármacos , Hepatopatias/prevenção & controle , Choque Hemorrágico/tratamento farmacológico , Triptaminas/farmacologia , Análise de Variância , Animais , Modelos Animais de Doenças , Infusões Intravenosas , Circulação Hepática/fisiologia , Hepatopatias/etiologia , Testes de Função Hepática , Masculino , Probabilidade , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de Melatonina/efeitos dos fármacos , Sensibilidade e Especificidade , Choque Hemorrágico/complicações , Choque Hemorrágico/fisiopatologia
14.
Crit Care Med ; 36(1): 24-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18090374

RESUMO

OBJECTIVE: Melatonin has been demonstrated to attenuate organ damage in models of ischemia and reperfusion. Melatonin treatment before hemorrhagic shock has been shown to improve liver function and hepatic perfusion. Proposed mechanisms of the pineal hormone involve direct inactivation of reactive oxygen species and induction of antioxidative enzymes. However, recent evidence suggests a strong influence of melatonin receptor activation for these effects. Specific protection of organ function by melatonin after hemorrhage has not been investigated yet. In this study, we evaluated whether melatonin therapy after hemorrhagic shock improves liver function and hepatic perfusion, with emphasis on melatonin receptor activation. DESIGN: Prospective, randomized, controlled study. SETTING: University research laboratory. SUBJECTS: Male Sprague-Dawley rats, 200-300 g (n = 10 per group). INTERVENTIONS: Animals underwent hemorrhagic shock (mean arterial pressure, 35 +/- 5 mm Hg for 90 mins) and were resuscitated with shed blood and Ringer's solution. At the end of shock, animals were treated with either melatonin (10 mg/kg, intravenously), melatonin receptor antagonist luzindole (2.5 mg/kg, intravenously) plus melatonin (10 mg/kg, intravenously), luzindole alone (2.5 mg/kg, intravenously), or vehicle. MEASUREMENTS AND MAIN RESULTS: After 2 hrs of reperfusion, either liver function was assessed by plasma disappearance rate of indocyanine green or intravital microscopy of the liver was performed for evaluation of hepatic perfusion, hepatocellular redox state, and hepatic integrity. Compared with vehicle controls, melatonin therapy after hemorrhagic shock significantly improved plasma disappearance rate of indocyanine green, hepatic redox state, hepatocellular injury, and hepatic perfusion index. Coadministration of luzindole completely abolished the protective effect with respect to liver function only, and improvements regarding hepatic redox state, perfusion, and integrity were comparable with melatonin treatment alone. CONCLUSIONS: Melatonin therapy after hemorrhagic shock improves liver function, hepatic perfusion, redox state, and hepatic integrity. With respect to liver function, beneficial effects of the pineal hormone seem to be dependent on melatonin receptor activation.


Assuntos
Antioxidantes/uso terapêutico , Fígado/efeitos dos fármacos , Melatonina/uso terapêutico , Receptores de Melatonina/efeitos dos fármacos , Choque Hemorrágico/tratamento farmacológico , Animais , Corantes/metabolismo , Modelos Animais de Doenças , Verde de Indocianina/metabolismo , Fígado/irrigação sanguínea , Fígado/metabolismo , Fígado/fisiopatologia , Testes de Função Hepática , Masculino , Microcirculação/efeitos dos fármacos , Microcirculação/fisiopatologia , NADP/metabolismo , Estudos Prospectivos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de Melatonina/metabolismo , Valores de Referência , Choque Hemorrágico/metabolismo , Choque Hemorrágico/fisiopatologia , Resultado do Tratamento
15.
Shock ; 29(5): 583-90, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18414232

RESUMO

Microvascular failure is a major determinant for the development of hepatocellular dysfunction after hemorrhagic shock. Induction of heme oxygenase (HO) 1 may confer hepatocellular protection. Hemin arginate (HAR) induces HO-1 and protects against shock-induced organ failure. The mechanisms are not completely understood, but HO-1-mediated protective effects on the microcirculation and on the inflammatory response may contribute. Therefore, the aim of the present study was to investigate the influence of HAR pretreatment on liver microcirculation and cytokine response to assess the role of HO-1-mediated effects under these conditions. Male Sprague-Dawley rats (200-300 g; n=8 per group) were subjected to hemorrhage (MAP, 30-40 mmHg for 1 h) 24 h after pretreatment with vehicle (Ringer solution) or HAR (5 mg kg(-1)), followed by 2 h of resuscitation. The microcirculation and the redox state (nicotinamide adenine dinucleotide phosphate [reduced form; NADPH] autofluorescence) of the liver were assessed using intravital microscopy. Cytokine levels (TNF-alpha and IL-10) were quantified using an enzyme-linked immunosorbent assay. A profound induction of HO-1 was observed 24 h after pretreatment with HAR. Hemorrhage significantly reduced sinusoidal perfusion and increased NADPH autofluorescence and cytokine levels. Hemin arginate pretreatment significantly improved liver microcirculation, reduced NADPH autofluorescence, significantly increased IL-10, and tended to decrease TNF-alpha serum levels compared with shock vehicle. Blockade of the HO pathway with tin-mesoporphyrin-IX after HAR pretreatment abolished the observed beneficial effects, whereas the additional administration of the carbon monoxide donor dichloromethane reversed the tin-mesoporphyrin-IX-mediated changes. These results suggest that HAR pretreatment improves liver microcirculation and mediates an anti-inflammatory cytokine response after hemorrhagic shock through induction of HO-1 and in part through an increased carbon monoxide release.


Assuntos
Anti-Inflamatórios/farmacologia , Arginina/metabolismo , Citocinas/metabolismo , Heme Oxigenase-1/biossíntese , Heme/metabolismo , Fígado/irrigação sanguínea , Fígado/metabolismo , Microcirculação , Choque Hemorrágico/metabolismo , Animais , Proteínas de Choque Térmico/metabolismo , Hemorragia/metabolismo , Interleucina-10/biossíntese , Masculino , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
16.
Shock ; 29(1): 112-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17666950

RESUMO

Exogenous administration of pineal hormone melatonin (MEL) has been demonstrated to attenuate organ damage in models of I/R and inflammation by antioxidative effects. However, specific organ-protective effects of MEL with respect to hemorrhagic shock have not been investigated yet. In the present study, we evaluated the role of MEL pretreatment for hepatic perfusion, redox state, and function after hemorrhage and resuscitation, with emphasis on MEL receptor activation. In a model of hemorrhagic shock (MAP 35 +/- 5 mmHg for 90 min) and reperfusion (2 h), we measured nicotinamide adenine dinucleotide phosphate (reduced form; NADPH) autofluorescence, hepatic microcirculation, and hepatocellular injury by intravital microscopy, as well as plasma disappearance rate of indocyanine green (PDRICG) as a sensitive maker of liver function in rat. Pretreatment with 10 mg kg(-1) MEL (i.v.) 15 min before induction of hemorrhage resulted in a significantly improved PDR(ICG) compared with controls (MEL/shock, 15.02% min(-1) +/- 2.9 SD vs. vehicle/shock, 6.18 +/- 4.6 SD; P = 0.001). Intravital microscopy after reperfusion revealed an improved hepatic perfusion index, redox state, and reduced hepatocellular injury in pretreated animals compared with the vehicle group. Melatonin receptor antagonist luzindole (LZN; 2.5 mg kg(-1)) almost completely abolished the protective effects of MEL pretreatment with respect to liver function (MEL + LZN/shock PDR(ICG), 7.31% min(-1) +/- 3.4 SD). Beneficial effects regarding hepatic perfusion, redox state, and cellular injury were not influenced by LZN, indicating that they may depend on antioxidative effects of MEL. However, liver function after hemorrhage is effectively maintained by MEL pretreatment via receptor-dependent pathways.


Assuntos
Circulação Hepática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Melatonina/farmacologia , Choque Hemorrágico/tratamento farmacológico , Animais , Modelos Animais de Doenças , Verde de Indocianina/farmacocinética , Fígado/enzimologia , Fígado/fisiopatologia , Masculino , Melatonina/administração & dosagem , NADP/metabolismo , Ratos , Ratos Sprague-Dawley , Ressuscitação , Choque Hemorrágico/fisiopatologia , Choque Hemorrágico/prevenção & controle , Choque Hemorrágico/terapia
17.
J Pharm Biomed Anal ; 150: 341-346, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29287260

RESUMO

Propofol concentration in human plasma can be quantified by liquid chromatography coupled mass spectrometry. Sample preparation usually requires solid phase extraction to remove matrix components and enrich the analyte. To facilitate user-independent measurements and speed extraction, we developed and validated a fully automated high throughput in-line sample preparation system with direct injection into liquid chromatography coupled mass spectrometry. We assessed linearity of each method over the clinically relevant concentration range from 0.5µg/mL to 8µg/mL plasma concentration. R2 values were 0.99 for the automated process and 0.98 for manual sample preparation. The limit of detection was 6ng/mL and the lower limit of quantification was 18ng/mL for the automated method; for the manual process, the limit of detection was 1.58ng/mL and the lower limit of quantification was 4.79ng/mL. Intra-day precision for low, medium and high concentration range of the automated method was validated 4.14%, 9.68% and 3.04% relative standard deviation and 0.29%, 0.12% and 0.52% for the manual process. Carry over was 0.4% with the automated method, whereas there was no carry over with the manual method. Stability of plasma samples was tested with the manual method at concentrations of 1, 4, and 6µg/mL propofol and found to be stable over 150days at -20°C. The manual sample preparation method has successfully been transferred to a fully automated process with appropriate sensitivity and precision but the automatization failed with regard to trueness and working time due to lengthy sample preparation runtime. Therefore it is not suitable for daily use in a hospital laboratory e.g. for brain death diagnosis in the intensive care unit.


Assuntos
Anestésicos Intravenosos/sangue , Cromatografia Líquida , Espectrometria de Massas , Propofol/sangue , Extração em Fase Sólida , Automação Laboratorial , Calibragem , Cromatografia Líquida/normas , Humanos , Limite de Detecção , Modelos Lineares , Espectrometria de Massas/normas , Padrões de Referência , Reprodutibilidade dos Testes , Extração em Fase Sólida/normas , Fluxo de Trabalho
18.
J Breath Res ; 10(1): 016016, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26971584

RESUMO

Ischemia and reperfusion alter metabolism. Multi-capillary column ion-mobility spectrometry (MCC-IMS) can identify volatile organic compounds (VOCs) in exhaled gas. We therefore used MCC-IMS to evaluate exhaled gas in a rat model of hemorrhagic shock with reperfusion. Adult male Sprague-Dawley rats (n = 10 in control group, n = 15 in intervention group) were anaesthetized and ventilated via tracheostomy for 14 h or until death. Hemorrhagic shock was maintained for 90 min by removing blood from the femoral artery to a target of MAP 35 ± 5 mmHg, and then retransfusing the blood over 60 min in 15 rats; 10 control rats were evaluated without shock and reperfusion. Exhaled gas was analyzed with MCC-IMS, VOCs were identified using the BS-MCC/IMS analytes database (Version 1209). VOC intensities were analyzed at the end of shock, end of reperfusion, and after 9 h. All normotensive animals survived the observation period, whereas mean survival time was 11.2 h in shock and reperfusion animals. 16 VOCs differed significantly for at least one of the three analysis periods. Peak intensities of butanone, 2-ethyl-1-hexanol, nonanal, and an unknown compound were higher in shocked than normotensive rats, and another unknown compound increased over the time. 1-butanol increased only during reperfusion. Acetone, butanal, 1.2-butandiol, isoprene, 3-methylbutanal, 3-pentanone, 2-propanol, and two unknown compounds were lower and decreased during shock and reperfusion. 1-pentanol and 1-propanol were significant greater in the hypotensive animals during shock, were comparable during reperfusion, and then decreased after resuscitation. VOCs differ during hemorrhagic shock, reperfusion, and after reperfusion. MCC-IMS of exhaled breath deserves additional study as a non-invasive approach for monitoring changes in metabolism during ischemia and reperfusion.


Assuntos
Testes Respiratórios/métodos , Reperfusão , Choque Hemorrágico/metabolismo , Compostos Orgânicos Voláteis/análise , Animais , Expiração , Masculino , Ratos , Ratos Sprague-Dawley , Análise Espectral/métodos
19.
J Breath Res ; 10(4): 047101, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677863

RESUMO

Breath analysis of rats using multi-capillary column ion-mobility spectrometry (MCC-IMS) revealed alterations in acetone and other ketones, including 3-pentanone, during inflammation. The alterations seem likely to result from oxidative branched-chain keto acid (BCKA) catabolism. We therefore tested the hypothesis that 3-pentanone arises during inflammation from increased BCKA oxidation in the liver with consequent accumulation of propionyl-CoA and its condensation products. Male Sprague-Dawley rats were anaesthetised and ventilated for 24 h or until death. Exhaled breath was analysed by MCC-IMS while rats were injected with low and high doses of lipopolysaccharide (LPS), tumour necrosis factor α (TNFα), or vehicle. The exhaled 3-pentanone peak was identified by pure substance measurements. Blood was collected 12 h after treatment for the determination of cytokine concentrations; transcription enzymes for BCKA catabolism and the activity of the BCKA dehydrogenase were analysed in liver tissue by quantitative real-time PCR and western blotting. Exhaled 3-pentanone decreased in all groups, but minimum concentrations with high-dose LPS (0.24 ± 0.31 volts; mean ± SD), low-dose TNFα (0.17 ± 0.10 volts) and high-dose TNFα (0.13 ± 0.04 volts) were lower than in vehicle animals (0.27 ± 0.12 volts). At 60% and 85% survival times (svt) concentrations of exhaled 3-pentanone increased significantly in all animals treated with low-dose LPS, (svt60% 0.38 ± 0.18 volts, svt85% 0.62 ± 0.15 volts) and high-dose LPS (0.26 ± 0.28 volts, 0.40 ± 0.22 volts), as well as low-dose TNFα, (0.20 ± 0.09 volts, 0.39 ± 0.17 volts) and high-dose TNFα (0.18 ± 0.06 volts, 0.34 ± 0.08 volts), but not in vehicle rats (0.27 ± 0.12 volts, 0.30 ± 0.09 volts). BCKA catabolism was seen in the liver, with increased expression and activity of the branched-chain alpha-keto acid dehydrogenase (BCKD), lower expression of the propionyl-CoA carboxylase (PCC) subunits, and altered expression levels of BCKD regulating enzymes. Exhaled 3-pentanone may arise from altered BCKA catabolism. Our results suggest that excessive propionyl-CoA is possibly generated from BCKAs via increased activity of BCKD, but may undergo unusual condensation reactions rather than being physiologically processed to methylmalonyl-CoA by PCC. The pattern of 3-pentanone during early and prolonged inflammation suggests that reuse of BCKAs for the synthesis of new proteins might be initially favoured. As inflammatory conditions persist, substrates for cellular energy supply are required which activate irreversible degradation of excessive BCKA to propionyl-CoA yielding increased levels of exhaled 3-pentanone.


Assuntos
Inflamação/metabolismo , Pentanonas/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Calibragem , Expiração/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-10/sangue , Interleucina-6/sangue , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Fatores de Tempo , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/farmacologia , Compostos Orgânicos Voláteis/análise
20.
FASEB J ; 17(9): 993-1002, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773482

RESUMO

Progressive liver dysfunction contributes significantly to the development of multiple organ failure after trauma/hemorrhage. This study tested the relative impact of necrotic and apoptotic cell death in a graded model of hemorrhagic shock (mean arterial blood pressure=35+/-5 mmHg for 1, 2, or 3 h, followed by 2 h, 1 h, or no resuscitation, respectively) in rats. Prolonged periods of hemorrhagic hypotension (3 h) were paralleled by a profound decrease of hepatic ATP levels and occurrence of pericentral necrosis. Resuscitation after shorter periods of hemorrhagic hypotension resulted in restoration of tissue ATP whereas hepatocellular function as assessed by indocyanine green clearance remained depressed (49.9+/-1.6 mL/(min x kg) at baseline, 28.8+/-1.2 mL/(min x kg) after 2 h of resuscitation; P<0.05). Under these conditions, induction of caspase activity and DNA fragmentation were observed in pericentral hepatocytes that could be prevented by the radical scavenger tempol. Pretreatment with z-Val-Ala-Asp(O-methyl)-flouromethylketone prevented de novo expression of caspase-generated cytokeratin 18, DNA fragmentation, and depression of hepatocellular indocyanine green clearance. These data suggest that prolonged low flow/hypoxia induces ATP depletion and pericentral necrosis and restoration of oxygen supply and ATP levels after shorter periods of low flow ischemia propagate programmed cell death or "pericentral apoptosis."


Assuntos
Trifosfato de Adenosina/metabolismo , Apoptose , Fígado/metabolismo , Fígado/patologia , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Antioxidantes/farmacologia , Inibidores de Caspase , Óxidos N-Cíclicos/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Hepatócitos/patologia , Hipotensão/fisiopatologia , Verde de Indocianina/análise , Isquemia/patologia , Fígado/irrigação sanguínea , Fígado/fisiopatologia , Masculino , Necrose , Ratos , Ratos Sprague-Dawley , Ressuscitação , Choque Hemorrágico/fisiopatologia , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA