Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 154(4): 1069-1079, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38453027

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide. Although the overall incidence of CRC has been decreasing over the past 40 y, early-onset colorectal cancer (EOCRC), which is defined as a CRC diagnosis in patients aged >50 y has increased. In this Perspective, we highlight and summarize the association between diet quality and excess adiposity, and EOCRC. We also explore chronic psychosocial stress (CPS), a less investigated modifiable risk factor, and EOCRC. We were able to show that a poor-quality diet, characterized by a high intake of sugary beverages and a Western diet pattern (high intake of red and processed meats, refined grains, and foods with added sugars) can promote risk factors associated with EOCRC development, such as an imbalance in the composition and function of the gut microbiome, presence of chronic inflammation, and insulin resistance. Excess adiposity, particularly obesity onset in early adulthood, is a likely contributor of EOCRC. Although the research is sparse examining CPS and CRC/EOCRC, we describe likely pathways linking CPS to tumorigenesis. Although additional research is needed to understand what factors are driving the uptick in EOCRC, managing body weight, improving diet quality, and mitigating psychosocial stress, may play an important role in reducing an individual's risk of EOCRC.


Assuntos
Adiposidade , Neoplasias Colorretais , Adulto , Humanos , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Dieta Ocidental , Obesidade/complicações , Obesidade/epidemiologia , Estresse Psicológico/complicações , Açúcares
2.
Nutr Cancer ; 75(3): 876-889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36625531

RESUMO

Obesity is considered an independent risk factor for colorectal cancer (CRC). Altered nutrient metabolism, particularly changes to digestion and intestinal absorption, may play an important role in the development of CRC. Iron can promote the formation of tissue-damaging and immune-modulating reactive oxygen species. We conducted a crossover, controlled feeding study to examine the effect of three, 3-week diets varying in iron and saturated fat content on the colonic milieu and systemic markers among older females with obesity. Anthropometrics, fasting venous blood and stool were collected before and after each diet. There was a minimum 3-week washout period between diets. Eighteen participants consumed the three diets (72% Black; mean age 60.4 years; mean body mass index 35.7 kg/m2). Results showed no effect of the diets on intestinal inflammation (fecal calprotectin) or circulating iron, inflammation, and metabolic markers. Pairwise comparisons revealed less community diversity between samples (beta diversity, calculated from 16S rRNA amplicon sequences) among participants when consuming a diet low in iron and high in saturated fat vs. when consuming a diet high in iron and saturated fat. More studies are needed to investigate if dietary iron represents a salient target for CRC prevention among individuals with obesity.


Assuntos
Dieta , Microbioma Gastrointestinal , Intestinos , Feminino , Humanos , Pessoa de Meia-Idade , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos , Inflamação/etiologia , Ferro , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/microbiologia , RNA Ribossômico 16S/genética , Intestinos/microbiologia , Intestinos/fisiologia
3.
BMC Microbiol ; 21(1): 24, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430766

RESUMO

BACKGROUND: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. RESULTS: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na+/H+ antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. CONCLUSIONS: This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Berberina/administração & dosagem , Ácidos e Sais Biliares/metabolismo , RNA Ribossômico 16S/genética , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Berberina/farmacologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Masculino , Metabolômica , Camundongos , Análise de Sequência de RNA , Especificidade da Espécie
4.
Ann Nutr Metab ; 77 Suppl 4: 37-45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35226903

RESUMO

INTRODUCTION: Prevalence of chronic hypohydration remains elevated among adults in the USA; however, the health effects of hypohydration in regards to human gut health have not been explored. METHODS: This study examined the relationship between total water intake, hydration biomarkers (first-morning urine specific gravity [FMUsg], first-morning urine volume [FMUvol], and plasma copeptin), fecal microbiota, and plasma lipopolysaccharide-binding protein (LBP) in adults (25-45 years, 64% female). Fecal microbiota composition was assessed using 16S rRNA gene sequencing (V4 region). Immunoassays quantified plasma copeptin and LBP in fasted venous blood samples. Dietary variables were measured using 7-day food records. Linear discriminant analysis effect size (LEfSe) analyzed differentially abundant microbiota based on median cutoffs for hydration markers. Multiple linear regressions examined the relationship between LBP and copeptin. RESULTS: LEfSe identified 6 common taxa at the genus or species level that were differentially abundant in FMUsg, total water (g/day), or plasma copeptin (µg/mL) groups when split by their median values. Uncultured species in the Bacteroides, Desulfovibrio, Roseburia, Peptococcus, and Akkermansia genera were more abundant in groups that might indicate poorer hydration status. Multivariate linear analyses revealed a positive relationship between plasma copeptin and LBP when controlling confounding variables (F(6,52) = 4.45, p = 0.002, R2 = 0.34). CONCLUSIONS: Taxa common between markers are associated with the intestinal mucus layer, which suggests a potential link between hydration status and intestinal mucus homeostasis. The relationship between LBP and copeptin indicates that copeptin may be sensitive to metabolic endotoxemia and potentially gut barrier function.


Assuntos
Proteínas de Fase Aguda , Microbiota , Adulto , Biomarcadores , Proteínas de Transporte , Feminino , Humanos , Masculino , Glicoproteínas de Membrana , RNA Ribossômico 16S/genética
5.
Support Care Cancer ; 28(2): 683-689, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31123871

RESUMO

PURPOSE: Cancer is the second leading cause of death in the USA, and malnutrition secondary to cancer progression and treatment side effects is common. While abundant evidence indicates that nutrition support improves patient outcomes, it is estimated that up to half of malnutrition cases are misclassified or undiagnosed. The use of a multidisciplinary team to assess nutrition status has been observed previously to reduce delays in nutritional support. Hence, educating all members of the oncology healthcare team to assess nutrition status may encourage earlier diagnosis and lead to improved patient outcomes. Thus, the objective was to perform a pilot study to assess change in knowledge and self-efficacy among oncology team members after watching an educational video about malnutrition. METHODS: A pre-test post-test educational video intervention was given to 77 ambulatory oncology providers during weekly staff meetings at a community ambulatory oncology center in central Illinois. Change in knowledge and self-efficacy in malnutrition assessment and diagnosis was measured and acceptability of the brief educational video format was also observed. RESULTS: Mean test scores improved by 1.95 ± 1.48 points (p < 0.001). Individual occupational groups improved scores significantly (p ≤ 0.005) except for specialty clinical staff. Self-efficacy improved from 38 to 70%. 90.8% of participants indicated the educational video improved their confidence in assessing malnutrition. CONCLUSIONS: The educational video was well accepted and improved knowledge and self-efficacy of malnutrition assessment and diagnosis among ambulatory oncology providers. Wider implementation of such an educational intervention and longitudinal testing of knowledge retention and behaviors change is warranted.


Assuntos
Pessoal de Saúde/educação , Desnutrição/diagnóstico , Neoplasias/complicações , Estado Nutricional/fisiologia , Gravação de Videoteipe/instrumentação , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
6.
Hum Mol Genet ; 26(8): 1522-1534, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334952

RESUMO

DNMT1 is recruited to substrate sites by PCNA and UHRF1 to maintain DNA methylation after replication. The cell cycle dependent recruitment of DNMT1 is mediated by the PCNA-binding domain (PBD) and the targeting sequence (TS) within the N-terminal regulatory domain. The TS domain was found to be mutated in patients suffering from hereditary sensory and autonomic neuropathies with dementia and hearing loss (HSANIE) and autosomal dominant cerebellar ataxia deafness and narcolepsy (ADCA-DN) and is associated with global hypomethylation and site specific hypermethylation. With functional complementation assays in mouse embryonic stem cells, we showed that DNMT1 mutations P496Y and Y500C identified in HSANIE patients not only impair DNMT1 heterochromatin association, but also UHRF1 interaction resulting in hypomethylation. Similar DNA methylation defects were observed when DNMT1 interacting domains in UHRF1, the UBL and the SRA domain, were deleted. With cell-based assays, we could show that HSANIE associated mutations perturb DNMT1 heterochromatin association and catalytic complex formation at methylation sites and decrease protein stability in late S and G2 phase. To investigate the neuronal phenotype of HSANIE mutations, we performed DNMT1 rescue assays and could show that cells expressing mutated DNMT1 were prone to apoptosis and failed to differentiate into neuronal lineage. Our results provide insights into the molecular basis of DNMT1 dysfunction in HSANIE patients and emphasize the importance of the TS domain in the regulation of DNA methylation in pluripotent and differentiating cells.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Animais , Apoptose/genética , Proteínas Estimuladoras de Ligação a CCAAT/biossíntese , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/biossíntese , Regulação da Expressão Gênica , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Heterocromatina/genética , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Domínios Proteicos/genética , Domínios e Motivos de Interação entre Proteínas/genética , Estabilidade Proteica , Ubiquitina-Proteína Ligases
7.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737348

RESUMO

In the human gut, Clostridium scindens ATCC 35704 is a predominant bacterium and one of the major bile acid 7α-dehydroxylating anaerobes. While this organism is well-studied relative to bile acid metabolism, little is known about the basic nutrition and physiology of C. scindens ATCC 35704. To determine the amino acid and vitamin requirements of C. scindens, the leave-one-out (one amino acid group or vitamin) technique was used to eliminate the nonessential amino acids and vitamins. With this approach, the amino acid tryptophan and three vitamins (riboflavin, pantothenate, and pyridoxal) were found to be required for the growth of C. scindens In the newly developed defined medium, C. scindens fermented glucose mainly to ethanol, acetate, formate, and H2. The genome of C. scindens ATCC 35704 was completed through PacBio sequencing. Pathway analysis of the genome sequence coupled with transcriptome sequencing (RNA-Seq) under defined culture conditions revealed consistency with the growth requirements and end products of glucose metabolism. Induction with bile acids revealed complex and differential responses to cholic acid and deoxycholic acid, including the expression of potentially novel bile acid-inducible genes involved in cholic acid metabolism. Responses to toxic deoxycholic acid included expression of genes predicted to be involved in DNA repair, oxidative stress, cell wall maintenance/metabolism, chaperone synthesis, and downregulation of one-third of the genome. These analyses provide valuable insight into the overall biology of C. scindens which may be important in treatment of disease associated with increased colonic secondary bile acids.IMPORTANCEC. scindens is one of a few identified gut bacterial species capable of converting host cholic acid into disease-associated secondary bile acids such as deoxycholic acid. The current work represents an important advance in understanding the nutritional requirements and response to bile acids of the medically important human gut bacterium, C. scindens ATCC 35704. A defined medium has been developed which will further the understanding of bile acid metabolism in the context of growth substrates, cofactors, and other metabolites in the vertebrate gut. Analysis of the complete genome supports the nutritional requirements reported here. Genome-wide transcriptomic analysis of gene expression in the presence of cholic acid and deoxycholic acid provides a unique insight into the complex response of C. scindens ATCC 35704 to primary and secondary bile acids. Also revealed are genes with the potential to function in bile acid transport and metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Microbioma Gastrointestinal , Necessidades Nutricionais , Sequenciamento Completo do Genoma , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Ácido Cólico/metabolismo , Clostridiales/crescimento & desenvolvimento , Meios de Cultura , Reparo do DNA , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ácido Desoxicólico/metabolismo , Fermentação , Humanos , Hidroxilação , Análise de Sequência de RNA
9.
Gut ; 66(11): 1983-1994, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28153960

RESUMO

OBJECTIVE: Colorectal cancer (CRC) incidence is higher in African Americans (AAs) compared with non-Hispanic whites (NHWs). A diet high in animal protein and fat is an environmental risk factor for CRC development. The intestinal microbiota is postulated to modulate the effects of diet in promoting or preventing CRC. Hydrogen sulfide, produced by autochthonous sulfidogenic bacteria, triggers proinflammatory pathways and hyperproliferation, and is genotoxic. We hypothesised that sulfidogenic bacterial abundance in colonic mucosa may be an environmental CRC risk factor that distinguishes AA and NHW. DESIGN: Colonic biopsies from uninvolved or healthy mucosa from CRC cases and tumour-free controls were collected prospectively from five medical centres in Chicago for association studies. Sulfidogenic bacterial abundance in uninvolved colonic mucosa of AA and NHW CRC cases was compared with normal mucosa of AA and NHW controls. In addition, 16S rDNA sequencing was performed in AA cases and controls. Correlations were examined among bacterial targets, race, disease status and dietary intake. RESULTS: AAs harboured a greater abundance of sulfidogenic bacteria compared with NHWs regardless of disease status. Bilophila wadsworthia-specific dsrA was more abundant in AA cases than controls. Linear discriminant analysis of 16S rRNA gene sequences revealed five sulfidogenic genera that were more abundant in AA cases. Fat and protein intake and daily servings of meat were significantly higher in AAs compared with NHWs, and multiple dietary components correlated with a higher abundance of sulfidogenic bacteria. CONCLUSIONS: These results implicate sulfidogenic bacteria as a potential environmental risk factor contributing to CRC development in AAs.


Assuntos
Adenocarcinoma/microbiologia , Negro ou Afro-Americano , Colo/microbiologia , Neoplasias Colorretais/microbiologia , Mucosa Intestinal/microbiologia , Bactérias Redutoras de Enxofre/isolamento & purificação , População Branca , Adenocarcinoma/etnologia , Adenocarcinoma/etiologia , Adulto , Idoso , Estudos de Casos e Controles , Chicago , Neoplasias Colorretais/etnologia , Neoplasias Colorretais/etiologia , Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Proteínas Alimentares/efeitos adversos , Feminino , Disparidades nos Níveis de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco
10.
Gastroenterology ; 150(2): 367-79.e1, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26460205

RESUMO

BACKGROUND & AIMS: In fecal samples from patients with chronic constipation, the microbiota differs from that of healthy subjects. However, the profiles of fecal microbiota only partially replicate those of the mucosal microbiota. It is not clear whether these differences are caused by variations in diet or colonic transit, or are associated with methane production (measured by breath tests). We compared the colonic mucosal and fecal microbiota in patients with chronic constipation and in healthy subjects to investigate the relationships between microbiota and other parameters. METHODS: Sigmoid colonic mucosal and fecal microbiota samples were collected from 25 healthy women (controls) and 25 women with chronic constipation and evaluated by 16S ribosomal RNA gene sequencing (average, 49,186 reads/sample). We assessed associations between microbiota (overall composition and operational taxonomic units) and demographic variables, diet, constipation status, colonic transit, and methane production (measured in breath samples after oral lactulose intake). RESULTS: Fourteen patients with chronic constipation had slow colonic transit. The profile of the colonic mucosal microbiota differed between constipated patients and controls (P < .05). The overall composition of the colonic mucosal microbiota was associated with constipation, independent of colonic transit (P < .05), and discriminated between patients with constipation and controls with 94% accuracy. Genera from Bacteroidetes were more abundant in the colonic mucosal microbiota of patients with constipation. The profile of the fecal microbiota was associated with colonic transit before adjusting for constipation, age, body mass index, and diet; genera from Firmicutes (Faecalibacterium, Lactococcus, and Roseburia) correlated with faster colonic transit. Methane production was associated with the composition of the fecal microbiota, but not with constipation or colonic transit. CONCLUSIONS: After adjusting for diet and colonic transit, the profile of the microbiota in the colonic mucosa could discriminate patients with constipation from healthy individuals. The profile of the fecal microbiota was associated with colonic transit and methane production (measured in breath), but not constipation.


Assuntos
Bactérias/metabolismo , Colo/microbiologia , Constipação Intestinal/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Trânsito Gastrointestinal , Mucosa Intestinal/microbiologia , Metano/metabolismo , Adulto , Algoritmos , Bactérias/classificação , Bactérias/genética , Testes Respiratórios , Estudos de Casos e Controles , Doença Crônica , Colo/fisiopatologia , Constipação Intestinal/diagnóstico , Constipação Intestinal/fisiopatologia , Feminino , Humanos , Mucosa Intestinal/fisiopatologia , Pessoa de Meia-Idade , Análise Multivariada , Dinâmica não Linear , Filogenia , Ribotipagem
11.
J Nutr ; 147(7): 1282-1289, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28515165

RESUMO

Background: Zinc has been shown to improve intestinal barrier function against Salmonella enterica serovar Typhimurium (S. typhimurium) infection, but the mechanisms involved in this process remain undefined.Objective: We aimed to explore the roles of G protein-coupled receptor (GPR)39 and protein kinase Cζ (PKCζ) in the regulation by zinc of intestinal barrier function.Methods: A Transwell Caco-2 monolayer was pretreated with 0, 50, or 100 µM Zn and then incubated with S. typhimurium for 0-6 h. Afterward, cells silenced by the small interfering RNA for GPR39 or PKCζ were pretreated with 100 µM Zn and incubated with S. typhimurium for 3 h. Finally, transepithelial electrical resistance (TEER), permeability, tight junction (TJ) proteins, and signaling molecules GPR39 and PKCζ were measured.Results: Compared with controls, S. typhimurium decreased TEER by 62.3-96.2% at 4-6 h (P < 0.001), increased (P < 0.001) permeability at 6 h, and downregulated (P < 0.05) TJ protein zonula occludens (ZO)-1 and occludin by 104-123%, as well as Toll-like receptor 2 and PKCζ by 35.1% and 75.2%, respectively. Compared with S. typhimurium-challenged cells, 50 and 100 µM Zn improved TEER by 26.3-60.9% at 4-6 h (P < 0.001) and decreased (P < 0.001) permeability and bacterial invasion at 6 h. A total of 100 µM Zn increased ZO-1, occludin, GPR39, and PKCζ 0.72- to 1.34-fold (P < 0.05); however, 50 µM Zn did not affect ZO-1 or occludin (P > 0.1). Silencing GPR39 decreased (P < 0.05) zinc-activated PKCζ and blocked (P < 0.05) the promotion of zinc on epithelial integrity. Furthermore, silencing PKCζ counteracted the protective effect of zinc on epithelial integrity but did not inhibit GPR39 (P = 0.138).Conclusion: We demonstrated that zinc upregulates PKCζ by activating GPR39 to enhance the abundance of ZO-1, thereby improving epithelial integrity in S. typhimurium-infected Caco-2 cells.


Assuntos
Células Epiteliais/metabolismo , Intestinos/citologia , Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Salmonella typhimurium/fisiologia , Zinco/farmacologia , Células CACO-2 , Suplementos Nutricionais , Células Epiteliais/microbiologia , Regulação Enzimológica da Expressão Gênica , Humanos , Proteína Quinase C/genética , Receptores Acoplados a Proteínas G/genética , Junções Íntimas/fisiologia , Regulação para Cima , Zinco/administração & dosagem
12.
J Biol Chem ; 289(23): 16223-38, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24782312

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1, also known as ARTD1) is an abundant nuclear enzyme that plays important roles in DNA repair, gene transcription, and differentiation through the modulation of chromatin structure and function. In this work we identify a physical and functional poly(ADP-ribose)-mediated interaction of PARP1 with the E3 ubiquitin ligase UHRF1 (also known as NP95, ICBP90) that influences two UHRF1-regulated cellular processes. On the one hand, we uncovered a cooperative interplay between PARP1 and UHRF1 in the accumulation of the heterochromatin repressive mark H4K20me3. The absence of PARP1 led to reduced accumulation of H4K20me3 onto pericentric heterochromatin that coincided with abnormally enhanced transcription. The loss of H4K20me3 was rescued by the additional depletion of UHRF1. In contrast, although PARP1 also seemed to facilitate the association of UHRF1 with DNMT1, its absence did not impair the loading of DNMT1 onto heterochromatin or the methylation of pericentric regions, possibly owing to a compensating interaction of DNMT1 with PCNA. On the other hand, we showed that PARP1 controls the UHRF1-mediated ubiquitination of DNMT1 to timely regulate its abundance during S and G2 phase. Together, this report identifies PARP1 as a novel modulator of two UHRF1-regulated heterochromatin-associated events: the accumulation of H4K20me3 and the clearance of DNMT1.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Células 3T3 , Animais , Sequência de Bases , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Primers do DNA , Camundongos , Ligação Proteica , Ubiquitina-Proteína Ligases , Ubiquitinação
13.
Nucleic Acids Res ; 41(9): 4860-76, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23535145

RESUMO

DNA methyltransferase 1 (Dnmt1) reestablishes methylation of hemimethylated CpG sites generated during DNA replication in mammalian cells. Two subdomains, the proliferating cell nuclear antigen (PCNA)-binding domain (PBD) and the targeting sequence (TS) domain, target Dnmt1 to the replication sites in S phase. We aimed to dissect the details of the cell cycle-dependent coordinated activity of both domains. To that end, we combined super-resolution 3D-structured illumination microscopy and fluorescence recovery after photobleaching (FRAP) experiments of GFP-Dnmt1 wild type and mutant constructs in somatic mouse cells. To interpret the differences in FRAP kinetics, we refined existing data analysis and modeling approaches to (i) account for the heterogeneous and variable distribution of Dnmt1-binding sites in different cell cycle stages; (ii) allow diffusion-coupled dynamics; (iii) accommodate multiple binding classes. We find that transient PBD-dependent interaction directly at replication sites is the predominant specific interaction in early S phase (residence time Tres ≤ 10 s). In late S phase, this binding class is taken over by a substantially stronger (Tres ∼22 s) TS domain-dependent interaction at PCNA-enriched replication sites and at nearby pericentromeric heterochromatin subregions. We propose a two-loading-platform-model of additional PCNA-independent loading at postreplicative, heterochromatic Dnmt1 target sites to ensure faithful maintenance of densely methylated genomic regions.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fase S , Animais , Ciclo Celular , Linhagem Celular , Núcleo Celular/enzimologia , DNA (Citosina-5-)-Metiltransferase 1 , Difusão , Recuperação de Fluorescência Após Fotodegradação , Heterocromatina/enzimologia , Cinética , Camundongos , Modelos Biológicos , Estrutura Terciária de Proteína
14.
J Nutr ; 144(8): 1181-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24919690

RESUMO

Recent studies have highlighted the relation between high-fat (HF) diets, the gut microbiota, and inflammation. However, the role of sulfidogenic bacteria in mediating these effects has been explored only recently. Therefore, we tested the hypothesis that an HF diet rich in saturated fat stimulates sulfidogenic bacteria and that these increases correlate with intestinal and systemic inflammatory responses. Forty C57BL/6J male mice were fed a low-fat (LF; 10% of energy) or an HF lard-based (60% of energy) diet for 6 or 20 wk. Mucosa samples were collected from the ileum, cecum, and colon and used for measuring 16S ribosomal RNA and functional genes of sulfidogenic bacteria. Matching intestinal samples and visceral and subcutaneous white adipose tissue (WAT) depots were used to measure mRNA abundance for inflammatory genes. Mice fed the HF diet had greater (P < 0.05) abundance of 3 types of sulfidogenic bacteria, primarily in colonic mucosa, compared with LF-fed mice at week 20. Although HF feeding did not increase intestinal inflammation at week 6, ileal markers of macrophage infiltration and inflammation were upregulated (P < 0.05) 1- to 6-fold at week 20. HF feeding impaired the localization of the tight junction protein zonula occludens 1 at the apical area of the ileal epithelium at weeks 6 and 20. Mice fed the HF diet had 1- to 100-fold greater (P < 0.05) mRNA levels of markers of macrophage infiltration in visceral and subcutaneous WAT at week 20, but not at week 6, compared with LF-fed mice. These results provide evidence that chronic, but not acute, consumption of an HF lard-based diet may be linked with pathways of microbial metabolism that potentially contribute to chronic intestinal and systemic inflammation. Such linkage provides further support for reducing consumption of saturated fats.


Assuntos
Bactérias/metabolismo , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Intestinos/microbiologia , Animais , Biomarcadores/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Gordura Subcutânea
15.
Humanit Soc Sci Commun ; 10(1): 173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37096242

RESUMO

The present study identifies, organizes, and structures the available scientific knowledge on the recent use and the prospects of Voice Assistants (VA) in private households. The systematic review of the 207 articles from the Computer, Social, and Business and Management research domains combines bibliometric with qualitative content analysis. The study contributes to earlier research by consolidating the as yet dispersed insights from scholarly research, and by conceptualizing linkages between research domains around common themes. We find that, despite advances in the technological development of VA, research largely lacks cross-fertilization between findings from the Social and Business and Management Sciences. This is needed for developing and monetizing meaningful VA use cases and solutions that match the needs of private households. Few articles show that future research is well-advised to make interdisciplinary efforts to create a common understanding from complementary findings-e.g., what necessary social, legal, functional, and technological extensions could integrate social, behavioral, and business aspects with technological development. We identify future VA-based business opportunities and propose integrated future research avenues for aligning the different disciplines' scholarly efforts.

16.
Trials ; 24(1): 113, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36793105

RESUMO

BACKGROUND: Among all racial/ethnic groups, people who identify as African American/Blacks have the second highest colorectal cancer (CRC) incidence in the USA. This disparity may exist because African American/Blacks, compared to other racial/ethnic groups, have a higher prevalence of risk factors for CRC, including obesity, low fiber consumption, and higher intakes of fat and animal protein. One unexplored, underlying mechanism of this relationship is the bile acid-gut microbiome axis. High saturated fat, low fiber diets, and obesity lead to increases in tumor promoting secondary bile acids. Diets high in fiber, such as a Mediterranean diet, and intentional weight loss may reduce CRC risk by modulating the bile acid-gut microbiome axis. The purpose of this study is to test the impact of a Mediterranean diet alone, weight loss alone, or both, compared to typical diet controls on the bile acid-gut microbiome axis and CRC risk factors among African American/Blacks with obesity. Because weight loss or a Mediterranean diet alone can reduce CRC risk, we hypothesize that weight loss plus a Mediterranean diet will reduce CRC risk the most. METHODS: This randomized controlled lifestyle intervention will randomize 192 African American/Blacks with obesity, aged 45-75 years to one of four arms: Mediterranean diet, weight loss, weight loss plus Mediterranean diet, or typical diet controls, for 6 months (48 per arm). Data will be collected at baseline, mid-study, and study end. Primary outcomes include total circulating and fecal bile acids, taurine-conjugated bile acids, and deoxycholic acid. Secondary outcomes include body weight, body composition, dietary change, physical activity, metabolic risk, circulating cytokines, gut microbial community structure and composition, fecal short-chain fatty acids, and expression levels of genes from exfoliated intestinal cells linked to carcinogenesis. DISCUSSION: This study will be the first randomized controlled trial to examine the effects of a Mediterranean diet, weight loss, or both on bile acid metabolism, the gut microbiome, and intestinal epithelial genes associated with carcinogenesis. This approach to CRC risk reduction may be especially important among African American/Blacks given their higher risk factor profile and increased CRC incidence. TRIAL REGISTRATION: ClinicalTrials.gov NCT04753359 . Registered on 15 February 2021.


Assuntos
Neoplasias Colorretais , Dieta Mediterrânea , Microbioma Gastrointestinal , Humanos , Ácidos e Sais Biliares , Negro ou Afro-Americano , Neoplasias Colorretais/metabolismo , Obesidade/diagnóstico , Obesidade/terapia , Obesidade/complicações , Fatores de Risco , Redução de Peso
17.
Microbiome ; 10(1): 64, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440042

RESUMO

BACKGROUND: Recent evidence implicates microbial sulfidogenesis as a potential trigger of colorectal cancer (CRC), highlighting the need for comprehensive knowledge of sulfur metabolism within the human gut. Microbial sulfidogenesis produces genotoxic hydrogen sulfide (H2S) in the human colon using inorganic (sulfate) and organic (taurine/cysteine/methionine) substrates; however, the majority of studies have focused on sulfate reduction using dissimilatory sulfite reductases (Dsr). RESULTS: Here, we show that genes for microbial sulfur metabolism are more abundant and diverse than previously observed and are statistically associated with CRC. Using ~ 17,000 bacterial genomes from publicly available stool metagenomes, we studied the diversity of sulfur metabolic genes in 667 participants across different health statuses: healthy, adenoma, and carcinoma. Sulfidogenic genes were harbored by 142 bacterial genera and both organic and inorganic sulfidogenic genes were associated with carcinoma. Significantly, the anaerobic sulfite reductase (asr) genes were twice as abundant as dsr, demonstrating that Asr is likely a more important contributor to sulfate reduction in the human gut than Dsr. We identified twelve potential pathways for reductive taurine metabolism and discovered novel genera harboring these pathways. Finally, the prevalence of metabolic genes for organic sulfur indicates that these understudied substrates may be the most abundant source of microbially derived H2S. CONCLUSIONS: Our findings significantly expand knowledge of microbial sulfur metabolism in the human gut. We show that genes for microbial sulfur metabolism in the human gut are more prevalent than previously known, irrespective of health status (i.e., in both healthy and diseased states). Our results significantly increase the diversity of pathways and bacteria that are associated with microbial sulfur metabolism in the human gut. Overall, our results have implications for understanding the role of the human gut microbiome and its potential contributions to the pathogenesis of CRC. Video abstract.


Assuntos
Carcinoma , Neoplasias Colorretais , Microbioma Gastrointestinal , Bactérias , Neoplasias Colorretais/genética , Microbioma Gastrointestinal/genética , Humanos , Sulfatos/metabolismo , Enxofre/metabolismo , Taurina/metabolismo
18.
mSystems ; 7(1): e0117421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35103491

RESUMO

Bile acids (BAs) facilitate nutrient digestion and absorption and act as signaling molecules in a number of metabolic and inflammatory pathways. Expansion of the BA pool and increased exposure to microbial BA metabolites has been associated with increased colorectal cancer (CRC) risk. It is well established that diet influences systemic BA concentrations and microbial BA metabolism. Therefore, consumption of nutrients that reduce colonic exposure to BAs and microbial BA metabolites may be an effective method for reducing CRC risk, particularly in populations disproportionately burdened by CRC. Individuals who identify as Black/African American (AA/B) have the highest CRC incidence and death in the United States and are more likely to live in a food environment with an inequitable access to BA mitigating nutrients. Thus, this review discusses the current evidence supporting diet as a contributor to CRC disparities through BA-mediated mechanisms and relationships between these mechanisms and barriers to maintaining a low-risk diet.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Ácidos e Sais Biliares , Alimentos
19.
Gut Microbes ; 14(1): 2132903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36343662

RESUMO

The gut microbiome of vertebrates is capable of numerous biotransformations of bile acids, which are responsible for intestinal lipid digestion and function as key nutrient-signaling molecules. The human liver produces bile acids from cholesterol predominantly in the A/B-cis orientation in which the sterol rings are "kinked", as well as small quantities of A/B-trans oriented "flat" stereoisomers known as "primary allo-bile acids". While the complex multi-step bile acid 7α-dehydroxylation pathway has been well-studied for conversion of "kinked" primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, the enzymatic basis for the formation of "flat" stereoisomers allo-deoxycholic acid (allo-DCA) and allo-lithocholic acid (allo-LCA) by Firmicutes has remained unsolved for three decades. Here, we present a novel mechanism by which Firmicutes generate the "flat" bile acids allo-DCA and allo-LCA. The BaiA1 was shown to catalyze the final reduction from 3-oxo-allo-DCA to allo-DCA and 3-oxo-allo-LCA to allo-LCA. Phylogenetic and metagenomic analyses of human stool samples indicate that BaiP and BaiJ are encoded only in Firmicutes and differ from membrane-associated bile acid 5α-reductases recently reported in Bacteroidetes that indirectly generate allo-LCA from 3-oxo-Δ4-LCA. We further map the distribution of baiP and baiJ among Firmicutes in human metagenomes, demonstrating an increased abundance of the two genes in colorectal cancer (CRC) patients relative to healthy individuals.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Animais , Humanos , Firmicutes/metabolismo , Filogenia , Ácido Litocólico/metabolismo , Ácido Desoxicólico/metabolismo
20.
J Cell Biochem ; 112(9): 2585-93, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21598301

RESUMO

Gene expression is regulated by DNA as well as histone modifications but the crosstalk and mechanistic link between these epigenetic signals are still poorly understood. Here we investigate the multi-domain protein Uhrf2 that is similar to Uhrf1, an essential cofactor of maintenance DNA methylation. Binding assays demonstrate a cooperative interplay of Uhrf2 domains that induces preference for hemimethylated DNA, the substrate of maintenance methylation, and enhances binding to H3K9me3 heterochromatin marks. FRAP analyses revealed that localization and binding dynamics of Uhrf2 in vivo require an intact tandem Tudor domain and depend on H3K9 trimethylation but not on DNA methylation. Besides the cooperative DNA and histone binding that is characteristic for Uhrf2, we also found an opposite expression pattern of uhrf1 and uhrf2 during differentiation. While uhrf1 is mainly expressed in pluripotent stem cells, uhrf2 is upregulated during differentiation and highly expressed in differentiated mouse tissues. Ectopic expression of Uhrf2 in uhrf1(-/-) embryonic stem cells did not restore DNA methylation at major satellites indicating functional differences. We propose that the cooperative interplay of Uhrf2 domains may contribute to a tighter epigenetic control of gene expression in differentiated cells.


Assuntos
DNA/metabolismo , Inativação Gênica , Histonas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Células Cultivadas , DNA/química , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Histonas/química , Humanos , Metilação , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Análise de Célula Única , Ubiquitina-Proteína Ligases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA