Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Methods ; 19(2): 223-230, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132243

RESUMO

Isotope tracing has helped to determine the metabolic activities of organs. Methods to probe metabolic heterogeneity within organs are less developed. We couple stable-isotope-labeled nutrient infusion to matrix-assisted laser desorption ionization imaging mass spectrometry (iso-imaging) to quantitate metabolic activity in mammalian tissues in a spatially resolved manner. In the kidney, we visualize gluconeogenic flux and glycolytic flux in the cortex and medulla, respectively. Tricarboxylic acid cycle substrate usage differs across kidney regions; glutamine and citrate are used preferentially in the cortex and fatty acids are used in the medulla. In the brain, we observe spatial gradations in carbon inputs to the tricarboxylic acid cycle and glutamate under a ketogenic diet. In a carbohydrate-rich diet, glucose predominates throughout but in a ketogenic diet, 3-hydroxybutyrate contributes most strongly in the hippocampus and least in the midbrain. Brain nitrogen sources also vary spatially; branched-chain amino acids contribute most in the midbrain, whereas ammonia contributes in the thalamus. Thus, iso-imaging can reveal the spatial organization of metabolic activity.


Assuntos
Encéfalo/metabolismo , Isótopos de Carbono/farmacocinética , Rim/metabolismo , Isótopos de Nitrogênio/farmacocinética , Animais , Dieta , Enzimas , Gluconeogênese , Ácido Glutâmico/biossíntese , Glicólise , Masculino , Camundongos Endogâmicos C57BL , Imagem Molecular , Análise de Célula Única , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Ácidos Tricarboxílicos/metabolismo , Fluxo de Trabalho
2.
Nat Methods ; 16(7): 587-594, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31249407

RESUMO

One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.


Assuntos
Benchmarking , Espectrometria de Massas/métodos , Proteínas/química , Desnaturação Proteica , Processamento de Proteína Pós-Traducional , Proteômica
3.
Anal Chem ; 89(1): 895-901, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977147

RESUMO

Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.


Assuntos
Aminoidrolases/análise , Toxina da Cólera/análise , Ciclotrons , Estreptavidina/análise , Aminoidrolases/metabolismo , Análise de Fourier , Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
4.
J Mol Cell Cardiol ; 87: 102-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26268593

RESUMO

The heart is characterized by a remarkable degree of heterogeneity, the basis of which is a subject of active investigation. Myofilament protein post-translational modifications (PTMs) represent a critical mechanism regulating cardiac contractility, and emerging evidence shows that pathological cardiac conditions induce contractile heterogeneity that correlates with transmural variations in the modification status of myofilament proteins. Nevertheless, whether there exists basal heterogeneity in myofilament protein PTMs in the heart remains unclear. Here we have systematically assessed chamber-specific and transmural variations in myofilament protein PTMs, specifically, the phosphorylation of cardiac troponin I (cTnI), cardiac troponin T (cTnT), tropomyosin (Tpm), and myosin light chain 2 (MLC2). We show that the phosphorylation of cTnI and αTm vary in the different chambers of the heart, whereas the phosphorylation of MLC2 and cTnT does not. In contrast, no significant transmural differences were observed in the phosphorylation of any of the myofilament proteins analyzed. These results highlight the importance of appropriate tissue sampling-particularly for studies aimed at elucidating disease mechanisms and biomarker discovery-in order to minimize potential variations arising from basal heterogeneity in myofilament PTMs in the heart.


Assuntos
Miosinas Cardíacas/metabolismo , Miocárdio/metabolismo , Miofibrilas/metabolismo , Cadeias Leves de Miosina/metabolismo , Tropomiosina/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Humanos , Espectrometria de Massas , Fosforilação , Processamento de Proteína Pós-Traducional , Suínos
5.
Proteomics ; 14(10): 1271-82, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24478249

RESUMO

A comparison of different data-independent fragmentation methods combined with LC coupled to high-resolution FT-ICR-MS/MS is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complexes and their PTMs were identified using a 15 T FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty-cycle measurements that better suit online LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (continuous accumulation of selected ions)-CAD. The N-termini for 9 of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass-measurement accuracy with the LC-FT-ICR system for the 20- to 30-kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100-kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact-protein fragmentation and is an effective addition to the growing inventory of dissociation methods that are compatible with online protein separation coupled to FT-ICR-MS.


Assuntos
Cromatografia Líquida/métodos , Fragmentos de Peptídeos/química , Complexo de Endopeptidases do Proteassoma/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/instrumentação , Humanos , Fragmentos de Peptídeos/análise , Complexo de Endopeptidases do Proteassoma/análise , Proteômica/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/instrumentação
6.
Proteomics ; 14(10): 1130-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24644084

RESUMO

Pilot Project #1--the identification and characterization of human histone H4 proteoforms by top-down MS--is the first project launched by the Consortium for Top-Down Proteomics (CTDP) to refine and validate top-down MS. Within the initial results from seven participating laboratories, all reported the probability-based identification of human histone H4 (UniProt accession P62805) with expectation values ranging from 10(-13) to 10(-105). Regarding characterization, a total of 74 proteoforms were reported, with 21 done so unambiguously; one new PTM, K79ac, was identified. Inter-laboratory comparison reveals aspects of the results that are consistent, such as the localization of individual PTMs and binary combinations, while other aspects are more variable, such as the accurate characterization of low-abundance proteoforms harboring >2 PTMs. An open-access tool and discussion of proteoform scoring are included, along with a description of general challenges that lie ahead including improved proteoform separations prior to mass spectrometric analysis, better instrumentation performance, and software development.


Assuntos
Proteômica/métodos , Cromatografia Líquida/métodos , Análise por Conglomerados , Células HeLa , Histonas/análise , Histonas/química , Humanos , Espectrometria de Massas/métodos , Projetos Piloto , Processamento de Proteína Pós-Traducional , Software
7.
Anal Chem ; 86(1): 317-20, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24313806

RESUMO

Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) delivers high resolving power, mass measurement accuracy, and the capabilities for unambiguously sequencing by a top-down MS approach. Here, we report isotopic resolution of a 158 kDa protein complex, tetrameric aldolase with an average absolute deviation of 0.36 ppm and an average resolving power of ~520 000 at m/z 6033 for the 26+ charge state in magnitude mode. Phase correction further improves the resolving power and average absolute deviation by 1.3-fold. Furthermore, native top-down electron capture dissociation (ECD) enables the sequencing of 168 C-terminal amino acid (AA) residues out of 463 total AAs. Combining the data from top-down MS of native and denatured aldolase complexes, a total of 56% of the total backbone bonds were cleaved. The observation of complementary product ion pairs confirms the correctness of the sequence and also the accuracy of the mass fitting of the isotopic distribution of the aldolase tetramer. Top-down MS of the native protein provides complementary sequence information to top-down ECD and collisonally activated dissociation (CAD) MS of the denatured protein. Moreover, native top-down ECD of aldolase tetramer reveals that ECD fragmentation is not limited only to the flexible regions of protein complexes and that regions located on the surface topology are prone to ECD cleavage.


Assuntos
Ciclotrons , Análise de Fourier , Complexos Multiproteicos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas/métodos , Complexos Multiproteicos/análise , Estrutura Secundária de Proteína
8.
J Am Soc Mass Spectrom ; 34(5): 813-819, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37000420

RESUMO

To capture the structure of assembled hemagglutinin (HA) nanoparticles at single-particle resolution, HA-specific antigen binding fragments (Fabs) were labeled by fluorescent (FLR) dyes as probes to highlight the HA trimers displayed on the assembled tetravalent HA nanoparticles for a qualitative localization microscopic study. The FLR dyes were conjugated to the Fabs through N-hydroxysuccinimide (NHS) ester mediated amine coupling chemistry. The labeling profile, including labeling ratio, distribution, and site-specific labeling occupancy, can affect the imaging results and introduce inconsistency. To evaluate the labeling profile so as to evaluate the labeling efficiency, a combination of intact mass measurement by MALDI-MS and peptide mapping through LC-MS/MS was implemented. At the intact molecular level, the labeling ratio and distribution were determined. Through peptide mapping, the labeled residues were identified and the corresponding site-specific labeling occupancy was measured. A systematic comparative investigation of four different FLR-labeled 1H01-Fabs (generated from H1 strain HA specific mAb 1H01) allowed accurate profiling of the labeling pattern. The data indicate that the labeling was site-specific and semiquantitative. This warrants the consistency of single-particle fluorescent imaging experiments and allows a further imaging characterization of the single nanoparticles.


Assuntos
Aminas , Hemaglutininas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Corantes
10.
J Am Soc Mass Spectrom ; 33(12): 2203-2214, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36371691

RESUMO

Ultrahigh resolution mass spectrometry (UHR-MS) coupled with direct infusion (DI) electrospray ionization offers a fast solution for accurate untargeted profiling. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers have been shown to produce a wealth of insights into complex chemical systems because they enable unambiguous molecular formula assignment even if the vast majority of signals is of unknown identity. Interlaboratory comparisons are required to apply this type of instrumentation in quality control (for food industry or pharmaceuticals), large-scale environmental studies, or clinical diagnostics. Extended comparisons employing different FT-ICR MS instruments with qualitative direct infusion analysis are scarce since the majority of detected compounds cannot be quantified. The extent to which observations can be reproduced by different laboratories remains unknown. We set up a preliminary study which encompassed a set of 17 laboratories around the globe, diverse in instrumental characteristics and applications, to analyze the same sets of extracts from commercially available standard human blood plasma and Standard Reference Material (SRM) for blood plasma (SRM1950), which were delivered at different dilutions or spiked with different concentrations of pesticides. The aim of this study was to assess the extent to which the outputs of differently tuned FT-ICR mass spectrometers, with different technical specifications, are comparable for setting the frames of a future DI-FT-ICR MS ring trial. We concluded that a cluster of five laboratories, with diverse instrumental characteristics, showed comparable and representative performance across all experiments, setting a reference to be used in a future ring trial on blood plasma.

11.
bioRxiv ; 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35982683

RESUMO

Despite effective countermeasures, SARS-CoV-2 persists worldwide due to its ability to diversify and evade human immunity1. This evasion stems from amino-acid substitutions, particularly in the receptor-binding domain of the spike, that confer resistance to vaccines and antibodies 2-16. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different receptor binding domain (RBD) sites17,18 into multispecific antibodies. Here, we describe multispecific antibodies, including a trispecific that prevented virus escape >3000-fold more potently than the most effective clinical antibody or mixtures of the parental antibodies. Despite being generated before the evolution of Omicron, this trispecific antibody potently neutralized all previous variants of concern and major Omicron variants, including the most recent BA.4/BA.5 strains at nanomolar concentrations. Negative stain electron microscopy revealed that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated inter-spike binding. An optimized trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2 and BA.5, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. Such multispecific antibodies decrease the likelihood of SARS-CoV-2 escape, simplify treatment, and maximize coverage, providing a strategy for universal antibody therapies that could help eliminate pandemic spread for this and other pathogens.

12.
Eur J Mass Spectrom (Chichester) ; 17(2): 167-76, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21719917

RESUMO

Electron transfer through gas phase ion-ion reactions has led to the widespread application of electron- based techniques once only capable in ion trapping mass spectrometers. Although any mass analyzer can in theory be coupled to an ion-ion reaction device (typically a 3-D ion trap), some systems of interest exceed the capabilities of most mass spectrometers. This case is particularly true in the structural characterization of glycosaminoglycan (GAG) oligosaccharides. To adequately characterize highly sulfated GAGs or oligosaccharides above the tetrasaccharide level, a high resolution mass analyzer is required. To extend previous efforts on an ion trap mass spectrometer, negative electron transfer dissociation coupled with a Fourier transform ion cyclotron resonance mass spectrometer has been applied to increasingly sulfated heparan sulfate and heparin tetrasaccharides as well as a dermatan sulfate octasaccharide. Results similar to those obtained by electron detachment dissociation are observed.


Assuntos
Análise de Fourier , Glicosaminoglicanos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Sequência de Carboidratos , Dermatan Sulfato/química , Heparitina Sulfato/química , Modelos Moleculares , Dados de Sequência Molecular , Suínos
13.
iScience ; 24(5): 102457, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34013171

RESUMO

Translocator protein (TSPO, 18 kDa) levels increase in parallel with the evolution of simple steatosis (SS) to nonalcoholic steatohepatitis (NASH) in nonalcoholic fatty liver disease (NAFLD). However, TSPO function in SS and NASH is unknown. Loss of TSPO in hepatocytes in vitro downregulated acetyl-CoA acetyltransferase 2 and increased free cholesterol (FC). FC accumulation induced endoplasmic reticulum stress via IRE1A and protein kinase RNA-like ER kinase/ATF4/CCAAT-enhancer-binding protein homologous protein pathways and autophagy. TSPO deficiency activated cellular adaptive antioxidant protection; this adaptation was lost upon excessive FC accumulation. A TSPO ligand 19-Atriol blocked cholesterol binding and recapitulated many of the alterations seen in TSPO-deficient cells. These data suggest that TSPO deficiency accelerated the progression of SS. In NASH, however, loss of TSPO ameliorated liver fibrosis through downregulation of bile acid synthesis by reducing CYP7A1 and CYP27A1 levels and increasing farnesoid X receptor expression. These studies indicate a dynamic and complex role for TSPO in the evolution of NAFLD.

14.
Anal Chem ; 82(9): 3460-6, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20380445

RESUMO

Structural characterization of glycosaminoglycans (GAGs) has been a challenge in the field of mass spectrometry, and the application of electron detachment dissociation (EDD) Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has shown great promise to GAG oligosaccharide characterization in a single tandem mass spectrometry experiment. In this work, we apply the technique of negative electron transfer dissociation (NETD) to GAGs on a commercial ion trap mass spectrometer. NETD of GAGs, using fluoranthene or xenon as the reagent gas, produces fragmentation very similar to previously observed EDD fragmentation. Using fluoranthene or xenon, both glycosidic and cross-ring cleavages are observed, as well as even- and odd-electron products. The loss of SO(3) can be minimized and an increase in cross-ring cleavages is observed if a negatively charged carboxylate is present during NETD, which can be controlled by the charge state or the addition of sodium. NETD effectively dissociates GAGs up to eight saccharides in length, but the low resolution of the ion trap makes assigning product ions difficult. Similar to EDD, NETD is also able to distinguish the epimers iduronic acid from glucuronic acid in heparan sulfate tetrasaccharides and suggests that a radical intermediate plays an important role in distinguishing these epimers. These results demonstrate that NETD is effective at characterizing GAG oligosaccharides in a single tandem mass spectrometry experiment on a widely available mass spectrometry platform.


Assuntos
Elétrons , Glicosaminoglicanos/química , Espectrometria de Massas em Tandem
15.
J Nat Prod ; 73(3): 428-34, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20095632

RESUMO

Numerous marine-derived pyrrole-imidazole alkaloids (PIAs), ostensibly derived from the simple precursor oroidin, 1a, have been reported and have garnered intense synthetic interest due to their complex structures and in some cases biological activity; however very little is known regarding their biosynthesis. We describe a concise synthesis of 7-(15)N-oroidin (1d) from urocanic acid and a direct method for measurement of (15)N incorporation by pulse labeling and analysis by 1D (1)H-(15)N HSQC NMR and FTMS. Using a mock pulse labeling experiment, we estimate the limit of detection (LOD) for incorporation of newly biosynthesized PIA by 1D (1)H-(15)N HSQC to be 0.96 microg equivalent of (15)N-oroidin (2.4 nmole) in a background of 1500 microg of unlabeled oroidin (about 1 part per 1600). 7-(15)N-Oroidin will find utility in biosynthetic feeding experiments with live sponges to provide direct information to clarify the pathways leading to more complex pyrrole-imidazole alkaloids.


Assuntos
Alcaloides/síntese química , Pirróis/síntese química , Alcaloides/química , Alcaloides/metabolismo , Animais , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Poríferos/química , Pirróis/química , Pirróis/metabolismo
16.
J Am Soc Mass Spectrom ; 31(5): 1155-1162, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196330

RESUMO

Analysis of proteins and complexes under native mass spectrometric (MS) and solution conditions was typically performed using time-of-flight (ToF) analyzers, due to their routine high m/z transmission and detection capabilities. However, over recent years, the ability of Orbitrap-based mass spectrometers to transmit and detect a range of high molecular weight species is well documented. Herein, we describe how a 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer (15 T FT-ICR MS) is more than capable of analyzing a wide range of ions in the high m/z scale (>5000), in both positive and negative instrument polarities, ranging from the inorganic cesium iodide salt clusters; a humanized IgG1k monoclonal antibody (mAb; 148.2 kDa); an IgG1-mertansine drug conjugate (148.5 kDa, drug-to-antibody ratio; DAR 2.26); an IgG1-siRNA conjugate (159.1 kDa; ribonucleic acid to antibody ratio; RAR 1); the membrane protein aquaporin-Z (97.2 kDa) liberated from a C8E4 detergent micelle; the empty MSP1D1-nanodisc (142.5 kDa) and the tetradecameric chaperone protein complex GroEL (806.2 kDa; GroEL dimer at 1.6 MDa). We also investigate different regions of the FT-ICR MS that impact ion transmission and desolvation. Finally, we demonstrate how the transmission of these species and resultant spectra are highly consistent with those previously generated on both quadrupole-ToF (Q-ToF) and Orbitrap instrumentation. This report serves as an impactful example of how FT-ICR mass analyzers are competitive to Q-ToFs and Orbitraps for high mass detection at high m/z.


Assuntos
Ciclotrons , Análise de Fourier , Imunoconjugados/química , Espectrometria de Massas/métodos , Sais/química , Anticorpos Monoclonais/química , Césio/química , Chaperonina 60/química , Imunoglobulina G/química , Cadeias kappa de Imunoglobulina/química , Iodetos/química , Maitansina/química , Peso Molecular , RNA Interferente Pequeno/química
17.
Eur J Mass Spectrom (Chichester) ; 15(2): 275-81, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19423912

RESUMO

The structural analysis of sulfated carbohydrates such as glycosaminoglycans (GAGs) has been a long- standing challenge for the field of mass spectrometry. The dissociation of sulfated carbohydrates by collisionally- activated dissociation (CAD) or infrared multiphoton dissociation (IRMPD), which activate ions via vibrational excitation, typically result in few cleavages and abundant SO(3) loss for highly sulfated GAGs such as heparin and heparan sulfate, hampering efforts to determine sites of modification. The recent application of electron activation techniques, specifically electron capture dissociation (ECD) and electron detachment dissociation (EDD), provides a marked improvement for the mass spectrometry characterization of GAGs. In this work, we compare ECD, EDD and IRMPD for the dissociation of the highly sulfated carbohydrate sucrose octasulfate (SOS). Both positive and negative multiply-charged ions are investigated. ECD, EDD and IRMPD of SOS produce abundant and reproducible fragmentation. The product ions produced by ECD are quite different than those produced by IRMPD of SOS positive ions, suggesting different dissociation mechanisms as a result of electronic versus vibrational excitation. The product ions produced by EDD and IRMPD of SOS negative ions also differ from each other. Evidence for SO(3) rearrangement exists in the negative ion IRMPD data, complicating the assignment of product ions.


Assuntos
Elétrons , Íons/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sacarose/análogos & derivados , Análise de Fourier , Sacarose/química , Espectrometria de Massas em Tandem/métodos
18.
J Am Chem Soc ; 130(8): 2617-25, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18247611

RESUMO

The structure of an intact glycosaminoglycan (GAG) chain of the bikunin proteoglycan (PG) was analyzed using a combined top-down and bottom-up sequencing strategy. PGs are proteins with one or more linear, high-molecular weight, sulfated GAG polysaccharides O-linked to serine or threonine residues. GAGs are often responsible for the biological functions of PGs, and subtle variations in the GAG structure have pronounced physiological effects. Bikunin is a serine protease inhibitor found in human amniotic fluid, plasma, and urine. Bikunin is posttranslationally modified with a chondroitin sulfate (CS) chain, O-linked to a serine residue of the core protein. Recent studies have shown that the CS chain of bikunin plays an important role in the physiological and pathological functions of this PG. While no PG or GAG has yet been sequenced, bikunin, the least complex PG, offers a compelling target. Electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry (ESI FTICR-MS) permitted the identification of several major components in the GAG mixture having molecular masses in a range of 5505-7102 Da. This is the first report of a mass spectrum of an intact GAG component of a PG. FTICR-MS analysis of a size-uniform fraction of bikunin GAG mixture obtained by preparative polyacrylamide gel electrophoresis, allowed the determination of chain length and number of sulfo groups in the intact GAGs.


Assuntos
alfa-Globulinas/química , Glicosaminoglicanos/química , Proteoglicanas/química , Sequência de Carboidratos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular
19.
J Am Soc Mass Spectrom ; 19(6): 790-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18499037

RESUMO

Electron detachment dissociation (EDD) Fourier transform mass spectrometry has recently been shown to be a useful method for tandem mass spectrometry analysis of sulfated glycosaminoglycans (GAGs). EDD produces abundant glycosidic and cross-ring fragmentations that are useful for localizing sites of sulfation in GAG oligosaccharides. Although EDD fragmentation can be used to characterize GAGs in a single tandem mass spectrometry experiment, SO3 loss accompanies many peaks and complicates the resulting mass spectra. In this work we demonstrate the ability to significantly decrease SO3 loss by selection of the proper ionized state of GAG precursor ions. When the degree of ionization is greater than the number of sulfate groups in an oligosaccharide, a significant reduction in SO3 loss is observed in the EDD mass spectra. These data suggested that SO3 loss is reduced when an electron is detached from carboxylate groups instead of sulfate. Electron detachment occurs preferentially from carboxylate versus sulfate for thermodynamic reasons, provided that carboxylate is in its ionized state. Ionization of the carboxylate group is achieved by selecting the appropriate precursor ion charge state, or by the replacement of protons with sodium cations. Increasing the ionization state by sodium cation addition decreases, but does not eliminate, SO3 loss from infrared multiphoton dissociation of the same GAG precursor ions.


Assuntos
Glicosaminoglicanos/química , Modelos Químicos , Modelos Moleculares , Oligossacarídeos/química , Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cátions , Simulação por Computador , Fótons , Eletricidade Estática
20.
J Am Soc Mass Spectrom ; 19(10): 1449-58, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18657442

RESUMO

Electron detachment dissociation (EDD) Fourier transform mass spectrometry has recently been shown to be a powerful tool for examining the structural features of sulfated glycosaminoglycans (GAGs). The characteristics of GAG fragmentation by EDD include abundant cross-ring fragmentation primarily on hexuronic acid residues, cleavage of all glycosidic bonds, and the formation of even- and odd-electron product ions. GAG dissociation by EDD has been proposed to occur through the formation of an excited species that can undergo direct decomposition or ejects an electron and then undergoes dissociation. In this work, we perform electron-induced dissociation (EID) on singly charged GAGs to identify products that form via direct decomposition by eliminating the pathway of electron detachment. EID of GAG tetrasaccharides produces cleavage of all glycosidic bonds and abundant cross-ring fragmentation primarily on hexuronic acid residues, producing fragmentation similar to EDD of the same molecules, but distinctly different from the products of infrared multiphoton dissociation or collisionally activated decomposition. These results suggest that observed abundant fragmentation of hexuronic acid residues occurs as a result of their increased lability when they undergo electronic excitation. EID fragmentation of GAG tetrasaccharides results in both even- and odd-electron products. EID of heparan sulfate tetrasaccharide epimers produces identical fragmentation, in contrast to EDD, in which the epimers can be distinguished by their fragment ions. These data suggest that for EDD, electron detachment plays a significant role in distinguishing glucuronic acid from iduronic acid.


Assuntos
Análise de Fourier , Glicosaminoglicanos/química , Oligossacarídeos/química , Espectrometria de Massas em Tandem/métodos , Elétrons , Ácido Glucurônico/análise , Glicosaminoglicanos/análise , Heparitina Sulfato/química , Ácidos Hexurônicos/química , Ácido Idurônico/análise , Íons/análise , Íons/química , Isomerismo , Estrutura Molecular , Oligossacarídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA