Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555001

RESUMO

The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.


Assuntos
Neoplasias , Proteínas Tirosina Fosfatases , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/genética , Animais , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
2.
Neuro Oncol ; 25(12): 2287-2301, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486991

RESUMO

BACKGROUND: Medulloblastoma is the most common pediatric brain malignancy. Patients with the Group 3 subtype of medulloblastoma (MB) often exhibit MYC amplification and/or overexpression and have the poorest prognosis. While Group 3 MB is known to be highly dependent on MYC, direct targeting of MYC remains elusive. METHODS: Patient gene expression data were used to identify highly expressed EYA2 in Group 3 MB samples, assess the correlation between EYA2 and MYC, and examine patient survival. Genetic and pharmacological studies were performed on EYA2 in Group 3 derived MB cell models to assess MYC regulation and viability in vitro and in vivo. RESULTS: EYA2 is more highly expressed in Group 3 MB than other MB subgroups and is essential for Group 3 MB growth in vitro and in vivo. EYA2 regulates MYC expression and protein stability in Group 3 MB, resulting in global alterations of MYC transcription. Inhibition of EYA2 tyrosine phosphatase activity, using a novel small molecule inhibitor (NCGC00249987, or 9987), significantly decreases Group 3 MB MYC expression in both flank and intracranial growth in vivo. Human MB RNA-seq data show that EYA2 and MYC are significantly positively correlated, high EYA2 expression is significantly associated with a MYC transcriptional signature, and patients with high EYA2 and MYC expression have worse prognoses than those that do not express both genes at high levels. CONCLUSIONS: Our data demonstrate that EYA2 is a critical regulator of MYC in Group 3 MB and suggest a novel therapeutic avenue to target this highly lethal disease.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Linhagem Celular Tumoral , Proteínas Tirosina Fosfatases/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Tirosina , Proteínas Nucleares/genética , Peptídeos e Proteínas de Sinalização Intracelular
3.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617969

RESUMO

Glioblastoma ranks among the most lethal of primary brain malignancies, with glioblastoma stem cells (GSCs) at the apex of tumor cellular hierarchies. Here, to discover novel therapeutic GSC targets, we interrogated gene expression profiles from GSCs, differentiated glioblastoma cells (DGCs), and neural stem cells (NSCs), revealing EYA2 as preferentially expressed by GSCs. Targeting EYA2 impaired GSC maintenance and induced cell cycle arrest, apoptosis, and loss of self-renewal. EYA2 displayed novel localization to centrosomes in GSCs, and EYA2 tyrosine (Tyr) phosphatase activity was essential for proper mitotic spindle assembly and survival of GSCs. Inhibition of the EYA2 Tyr phosphatase activity, via genetic or pharmacological means, mimicked EYA2 loss in GSCs in vitro and extended the survival of tumor-bearing mice. Supporting the clinical relevance of these findings, EYA2 portends poor patient prognosis in glioblastoma. Collectively, our data indicate that EYA2 phosphatase function plays selective critical roles in the growth and survival of GSCs, potentially offering a high therapeutic index for EYA2 inhibitors.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Encéfalo/metabolismo , Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Células-Tronco Neurais/metabolismo
4.
J Clin Oncol ; 36(28): 2863-2871, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113886

RESUMO

PURPOSE: The aim of the current study was to determine the prevalence and clinical predictors of germline cancer susceptibility mutations in patients with malignant mesothelioma (MM). METHODS: We performed targeted capture and next-generation sequencing of 85 cancer susceptibility genes on germline DNA from 198 patients with pleural, peritoneal, and tunica vaginalis MM. RESULTS: Twenty-four germline mutations were identified in 13 genes in 23 (12%) of 198 patients. BAP1 mutations were the most common (n = 6; 25%). The remaining were in genes involved in DNA damage sensing and repair (n = 14), oxygen sensing (n = 2), endosome trafficking (n = 1), and cell growth (n = 1). Pleural site (odds ratio [OR], 0.23; 95% CI, 0.10 to 0.58; P < .01), asbestos exposure (OR, 0.28; 95% CI, 0.11 to 0.72; P < .01), and older age (OR, 0.95; 95% CI, 0.92 to 0.99; P = .01) were associated with decreased odds of carrying a germline mutation, whereas having a second cancer diagnosis (OR, 3.33; 95% CI, 1.22 to 9.07; P = .02) significantly increased the odds. The odds of carrying a mutation in BAP1 (OR, 1,658; 95% CI, 199 to 76,224; P < .001), BRCA2 (OR, 5; 95% CI, 1.0 to 14.7; P = .03), CDKN2A (OR, 53; 95% CI, 6 to 249; P < .001), TMEM127 (OR, 88; 95% CI, 1.7 to 1,105; P = .01), VHL (OR, 51; 95% CI, 1.1 to 453; P = .02), and WT1 (OR, 20; 95% CI, 0.5 to 135; P = .049) were significantly higher in MM cases than in a noncancer control population. Tumor sequencing identified mutations in a homologous recombination pathway gene in 52% (n = 29 of 54). CONCLUSION: A significant proportion of patients with MM carry germline mutations in cancer susceptibility genes, especially those with peritoneal MM, minimal asbestos exposure, young age, and a second cancer diagnosis. These data support clinical germline genetic testing for patients with MM and provide a rationale for additional investigation of the homologous recombination pathway in MM.


Assuntos
Mutação em Linhagem Germinativa/genética , Neoplasias Pulmonares/genética , Mesotelioma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mesotelioma Maligno , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA