Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cryobiology ; 115: 104879, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447705

RESUMO

Solid surface freezing or vitrification (SSF/SSV) can be done by depositing droplets of a sample, e.g., cells in a preservation solution, onto a pre-cooled metal surface. It is used to achieve higher cooling rates and concomitant higher cryosurvival rates compared to immersion of samples into liquid nitrogen. In this study, numerical simulations of SSF/SSV were conducted by modeling the cooling dynamics of droplets of cryoprotective agent (CPA) solutions. It was assumed that deposited droplets attain a cylindrical bottom part and half-ellipsoidal shaped upper part. Material properties for heat transfer simulations including density, heat capacity and thermal conductivity were obtained from the literature and extrapolated using polynomial fitting. The impact of CPA type, i.e., glycerol (GLY) and dimethyl sulfoxide (DMSO), CPA concentration, and droplet size on the cooling dynamics was simulated at different CPA mass fractions at temperatures ranging from -196 to 25 °C. Simulations show that glycerol solutions cool faster compared to DMSO solutions, and cooling rates increase with decreasing CPA concentration. However, we note that material property data for GLY and DMSO solutions were obtained in different temperature and concentration ranges under different conditions, which complicated making an accurate comparison. Experimental studies show that samples that freeze have a delayed cooling response early on, whereas equilibration times are similar compared to samples that vitrify. Finally, as proof of concept, droplets of human red blood cells (RBCs) were cryopreserved using SSV/SSF comparing the effect of GLY and DMSO on cryopreservation outcome. At 20% (w/w), similar hemolysis rates were found for GLY and DMSO, whereas at 40%, GLY outperformed DMSO.


Assuntos
Criopreservação , Crioprotetores , Dimetil Sulfóxido , Congelamento , Glicerol , Vitrificação , Crioprotetores/química , Crioprotetores/farmacologia , Glicerol/química , Glicerol/farmacologia , Dimetil Sulfóxido/química , Criopreservação/métodos , Humanos , Condutividade Térmica , Eritrócitos , Simulação por Computador
2.
Cryobiology ; 114: 104852, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295927

RESUMO

Cryopreserved semen is routinely shipped in liquid nitrogen. Dry ice could serve as an alternative coolant, however, frozen storage above liquid nitrogen temperatures (LN2, -196 °C) may negatively affect shelf-life and cryosurvival. In this study, we determined critical temperatures for storage of cryopreserved stallion sperm. We evaluated: (i) effects of cooling samples to different subzero temperatures (-10 °C to -80 °C) prior to storing in LN2, (ii) stability at different storage temperatures (i.e., in LN2, dry ice, -80 °C and -20 °C freezers, 5 °C refrigerator), and (iii) sperm cryosurvival during storage on dry ice (i.e., when kept below -70 °C and during warming). Furthermore, (iv) we analyzed if addition of synthetic polymers (PVP-40, Ficoll-70) modulates ice crystallization kinetics and improves stability of cryopreserved specimens. Sperm motility and membrane intactness were taken as measures of cryosurvival, and an artificial insemination trial was performed to confirm fertilizing capacity. We found that adding PVP-40 or Ficoll-70 to formulations containing glycerol reduced ice crystal sizes and growth during annealing. Post-thaw sperm viability data indicated that samples need to be cooled below -40 °C before they can be safely plunged and stored in LN2. No negative effects of relocating specimens from dry ice to LN2 and vice versa became apparent. However, sample warming above -50 °C during transport in dry ice should be avoided to ensure preservation of viability and fertility. Moreover, addition of PVP-40 or Ficoll-70 was found to increase sperm cryosurvival, especially under non-ideal storage conditions where ice recrystallization may occur.


Assuntos
Criopreservação , Preservação do Sêmen , Masculino , Animais , Cavalos , Criopreservação/métodos , Sêmen , Gelo-Seco , Gelo , Polímeros , Cristalização , Ficoll , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides , Nitrogênio , Povidona
3.
Cryobiology ; 114: 104793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979827

RESUMO

One of the most common life-saving medical procedures is a red blood cell (RBC) transfusion. Unfortunately, RBCs for transfusion have a limited shelf life after donation due to detrimental storage effects on their morphological and biochemical properties. Inspired by nature, a biomimetics approach was developed to preserve RBCs for long-term storage using compounds found in animals with a natural propensity to survive in a frozen or desiccated state for decades. Trehalose was employed as a cryoprotective agent and added to the extracellular freezing solution of porcine RBCs. Slow cooling (-1 °C min-1) resulted in almost complete hemolysis (1 ± 1 % RBC recovery), and rapid cooling rates had to be used to achieve satisfactory cryopreservation outcomes. After rapid cooling, the highest percentage of RBC recovery was obtained by plunging in liquid nitrogen and thawing at 55 °C, using a cryopreservation solution containing 300 mM trehalose. Under these conditions, 88 ± 8 % of processed RBCs were recovered and retained hemoglobin (14 ± 2 % hemolysis). Hemoglobin's oxygen-binding properties of cryopreserved RBCs were not significantly different to unfrozen controls and was allosterically regulated by 2,3-bisphosphoglycerate. These data indicate the feasibility of using trehalose instead of glycerol as a cryoprotective compound for RBCs. In contrast to glycerol, trehalose-preserved RBCs can potentially be transfused without time-consuming washing steps, which significantly facilitates the usage of cryopreserved transfusible units in trauma situations when time is of the essence.


Assuntos
Criopreservação , Crioprotetores , Animais , Suínos , Crioprotetores/química , Criopreservação/métodos , Trealose/farmacologia , Trealose/metabolismo , Glicerol/farmacologia , Glicerol/metabolismo , Hemólise , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Oxigênio/metabolismo
4.
Cryobiology ; 113: 104587, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783264

RESUMO

To develop cryopreservation methods for cell-based medicinal products it is important to understand osmotic responses of cells upon immersion into solutions with cryoprotective agents (CPAs) and during freezing. The aim of this study was to assess the osmotic response of T cells by using flow imaging microscopy (FIM) as a novel cell-sizing technique, and to corroborate the findings with electrical impedance measurements conducted on a Coulter counter. Jurkat cells were used as a potential model cell line for primary T cells. Cell volume responses were used to derive important cell parameters for cryopreservation such as the osmotically inactive cell volume Vb and the membrane permeability towards water and various CPAs. Unlike Coulter counter measurement, FIM, combined with Trypan blue staining can differentiate between viable and dead cells, which yields a more accurate estimation of Vb. Membrane permeabilities to water, dimethyl sulfoxide (Me2SO) and glycerol were measured for Jurkat cells at different temperatures. The permeation of Me2SO into the cells was faster in comparison to glycerol. CPA permeation decreased with decreasing temperature following Arrhenius behavior. Moreover, membrane permeability to water decreased in the presence of CPAs. Vb of Jurkat cells was found to be 49% of the isotonic volume and comparable to that of primary T cells. FIM proved to be a valuable tool to determine the membrane permeability parameters of mammalian cells to water and cryoprotective agents, which in turn can be used to rationally design CPA loading procedures for cryopreservation.


Assuntos
Crioprotetores , Glicerol , Humanos , Animais , Crioprotetores/farmacologia , Crioprotetores/metabolismo , Glicerol/metabolismo , Criopreservação/métodos , Microscopia , Linfócitos T , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Água/metabolismo , Mamíferos/metabolismo
5.
Cryobiology ; 101: 67-77, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34077709

RESUMO

Stallion sperm is typically cryopreserved using low cooling rates and low concentrations of cryoprotective agents (CPAs). The inevitable water-to-ice phase transition during cryopreservation is damaging and can be prevented using vitrification. Vitrification requires high cooling rates and high CPA concentrations. In this study, the feasibility of stallion sperm vitrification was investigated. A dual-syringe pump system was used to mix sperm equilibrated in a solution with a low concentration of CPAs, with a solution containing a high CPA concentration, and to generate droplets of a defined size (i.e., ~20 µL) that were subsequently cooled by depositing on an aluminum alloy block placed in liquid nitrogen. Mathematical modeling was performed to compute the heat transfer and rate of cooling. The minimum CPA concentration needed for vitrification was determined for various CPAs (glycerol, ethylene glycol, propylene glycol, dimethyl sulfoxide) and combinations thereof, while effects of droplet size and carrier solution were also identified. Sperm vitrification was eventually done using a glycerol/propylene glycol (1/1) mixture at a final concentration of 45% in buffered saline supplemented with 3% albumin and polyvinylpyrrolidon, while warming was done in standard diluent supplemented with 100 mM sucrose. The sperm concentration was found to greatly affect sperm membrane integrity after vitrification-and-warming, i.e., was found to be 21 ± 12% for 10 × 106 sperm mL-1 and 54 ± 8% for 1 × 106 sperm mL-1. However, an almost complete loss of sperm motility was observed. In conclusion, successful sperm vitrification requires establishing the narrow balance between droplet size, sperm concentration, CPA type and concentration, and exposure time.


Assuntos
Crioprotetores , Preservação do Sêmen , Animais , Criopreservação/métodos , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Etilenoglicol/farmacologia , Cavalos , Masculino , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides , Vitrificação
6.
Artif Organs ; 44(12): e552-e565, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32666514

RESUMO

Endothelialization of the blood contacting surfaces of blood-contacting medical devices, such as cardiovascular prostheses or biohybrid oxygenators, represents a plausible strategy for increasing their hemocompatibility. Nevertheless, isolation and expansion of autologous endothelial cells (ECs) usually requires multiple processing steps and time to obtain sufficient cell numbers. This excludes endothelialization from application in acute situations. Off-the-shelf availability of cell-seeded biohybrid devices could be potentially facilitated by hypothermic storage. In this study, the survival of cord-blood-derived endothelial colony forming cells (ECFCs) that were seeded onto polymethylpentene (PMP) gas-exchange membranes and stored for up to 2 weeks in different commercially available and commonly used preservation media was measured. While storage at 4°C in normal growth medium (EGM-2) for 3 days resulted in massive disruption of the ECFC monolayer and a significant decline in viability, ECFC monolayers preserved in Chillprotec could recover after up to 14 days with negligible effects on their integrity and viability. ECFC monolayers preserved in Celsior, HTS-FRS, or Rokepie medium showed a significant decrease in viability after 7 days or longer periods. These results demonstrated the feasibility of hypothermic preservation of ECFC monolayers on gas-exchange membranes for up to 2 weeks, with potential application on the preservation of pre-endothelialized oxygenators and further biohybrid cardiovascular devices.


Assuntos
Técnicas de Cultura de Células/métodos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Membranas Artificiais , Refrigeração , Trombose/prevenção & controle , Células Cultivadas , Temperatura Baixa , Oxigenação por Membrana Extracorpórea/instrumentação , Estudos de Viabilidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco , Trombose/etiologia
7.
Cryobiology ; 92: 215-230, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31972153

RESUMO

Through enabling an efficient supply of cells and tissues in the health sector on demand, cryopreservation is increasingly becoming one of the mainstream technologies in rapid translation and commercialization of regenerative medicine research. Cryopreservation of tissue-engineered constructs (TECs) is an emerging trend that requires the development of practically competitive biobanking technologies. In our previous studies, we demonstrated that conventional slow-freezing using dimethyl sulfoxide (Me2SO) does not provide sufficient protection of mesenchymal stromal cells (MSCs) frozen in 3D collagen-hydroxyapatite scaffolds. After simple modifications to a cryopreservation protocol, we report on significantly improved cryopreservation of TECs. Porous 3D scaffolds were fabricated using freeze-drying of a mineralized collagen suspension and following chemical crosslinking. Amnion-derived MSCs from common marmoset monkey Callithrix jacchus were seeded onto scaffolds in static conditions. Cell-seeded scaffolds were subjected to 24 h pre-treatment with 100 mM sucrose and slow freezing in 10% Me2SO/20% FBS alone or supplemented with 300 mM sucrose. Scaffolds were frozen 'in air' and thawed using a two-step procedure. Diverse analytical methods were used for the interpretation of cryopreservation outcome for both cell-seeded and cell-free scaffolds. In both groups, cells exhibited their typical shape and well-preserved cell-cell and cell-matrix contacts after thawing. Moreover, viability test 24 h post-thaw demonstrated that application of sucrose in the cryoprotective solution preserves a significantly greater portion of sucrose-pretreated cells (more than 80%) in comparison to Me2SO alone (60%). No differences in overall protein structure and porosity of frozen scaffolds were revealed whereas their compressive stress was lower than in the control group. In conclusion, this approach holds promise for the cryopreservation of 'ready-to-use' TECs.


Assuntos
Colágeno/farmacologia , Criopreservação/métodos , Crioprotetores/farmacologia , Durapatita/farmacologia , Células-Tronco Mesenquimais/citologia , Animais , Bancos de Espécimes Biológicos , Callithrix , Sobrevivência Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Congelamento , Sacarose/farmacologia , Engenharia Tecidual
8.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081128

RESUMO

Donor platelet transfusion is currently the only efficient treatment of life-threatening thrombocytopenia, but it is highly challenged by immunological, quality, and contamination issues, as well as short shelf life of the donor material. Ex vivo produced megakaryocytes and platelets represent a promising alternative strategy to the conventional platelet transfusion. However, practical implementation of such strategy demands availability of reliable biobanking techniques, which would permit eliminating continuous cell culture maintenance, ensure time for quality testing, enable stock management and logistics, as well as availability in a ready-to-use manner. At the same time, protocols applying DMSO-based cryopreservation media were associated with increased risks of adverse long-term side effects after patient use. Here, we show the possibility to develop cryopreservation techniques for iPSC-derived megakaryocytes under defined xeno-free conditions with significant reduction or complete elimination of DMSO. Comprehensive phenotypic and functional in vitro characterization of megakaryocytes has been performed before and after cryopreservation. Megakaryocytes cryopreserved DMSO-free, or using low DMSO concentrations, showed the capability to produce platelets in vivo after transfusion in a mouse model. These findings propose biobanking approaches essential for development of megakaryocyte-based replacement and regenerative therapies.


Assuntos
Preservação de Sangue/métodos , Criopreservação , Crioprotetores/toxicidade , Dimetil Sulfóxido/toxicidade , Megacariócitos/efeitos dos fármacos , Animais , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Megacariócitos/citologia , Camundongos , Camundongos SCID
9.
Langmuir ; 35(23): 7520-7528, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30501184

RESUMO

Cellular membranes are exposed to extreme conditions during the processing steps involved in cryopreservation (and freeze-drying) of cells. The first processing step involves adding protective agents. Exposing cells to protective agents causes fluxes of both water and solutes (i.e., permeating cryoprotective agents) across the cellular membrane, resulting in cell volume changes and possibly osmotic stress. In addition, protective molecules may interact with lipids, which may lead to membrane structural changes and permeabilization. After loading with protective agents, subsequent freezing exposes cells to severe osmotic and mechanical stresses, caused by extra and/or intracellular ice formation and a drastically increased solute concentration in the unfrozen fraction. Furthermore, cellular membranes undergo thermotropic and lyotropic phase transitions during cooling and freezing, which drastically alter the membrane permeability and its barrier function. In this article, it is shown that membrane permeability to water and solutes is dependent on the temperature, medium osmolality, types of solutes present, cell hydration level, and absence or presence of ice. Freezing most drastically alters the membrane permeability barrier function, which is reflected as a change in the activation energy for water transport. In addition, membranes become temporarily leaky during freezing-induced fluid-to-gel membrane phase transitions, resulting in the uptake of impermeable solutes.


Assuntos
Permeabilidade da Membrana Celular , Criopreservação , Água/metabolismo
10.
Cryobiology ; 91: 104-114, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31593692

RESUMO

Cryopreservation is the universal technology used to enable long-term storage and continuous availability of cell stocks and tissues for regenerative medicine demands. The main components of standard freezing media are dimethyl sulfoxide (hereinafter Me2SO) and fetal bovine serum (FBS). However, for manufacturing of cells and tissue-engineered products in accordance with the principles of Good Manufacturing Practice (GMP), current considerations in regenerative medicine suggest development of Me2SO- and serum-free biopreservation strategies due to safety concerns over Me2SO-induced side effects and immunogenicity of animal serum. In this work, the effect of electroporation-assisted pre-freeze delivery of sucrose, trehalose and raffinose into human umbilical cord mesenchymal stem cells (hUCMSCs) on their post-thaw survival was investigated. The optimal strength of electric field at 8 pulses with 100 µs duration and 1 Hz pulse repetition frequency was determined to be 1.5 kV/cm from permeabilization (propidium iodide uptake) vs. cell recovery data (resazurin reduction assay). Using sugars as sole cryoprotectants with electroporation, concentration-dependent increase in cell survival was observed. Irrespective of sugar type, the highest cell survival (up to 80%) was achieved at 400 mM extracellular concentration and electroporation. Cell freezing without electroporation yielded significantly lower survival rates. In the optimal scenario, cells were able to attach 24 h after thawing demonstrating characteristic shape and sugar-loaded vacuoles. Application of 10% Me2SO/90% FBS as a positive control provided cell survival exceeding 90%. Next, high glass transition temperatures determined for optimal concentrations of sugars by differential scanning calorimetry (DSC) suggest the possibility to store samples at -80 °C. In summary, using electroporation to incorporate cryoprotective sugars into cells is an effective strategy towards Me2SO- and serum-free cryopreservation and may pave the way for further progress in establishing clinically safe biopreservation strategies for efficient long-term biobanking of cells.


Assuntos
Criopreservação/métodos , Crioprotetores/metabolismo , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Eletroporação/métodos , Células-Tronco Mesenquimais/citologia , Animais , Bancos de Espécimes Biológicos , Sobrevivência Celular/efeitos dos fármacos , Congelamento , Humanos , Rafinose/metabolismo , Rafinose/farmacologia , Sacarose/metabolismo , Sacarose/farmacologia , Engenharia Tecidual , Trealose/metabolismo , Trealose/farmacologia , Cordão Umbilical/citologia
11.
Biochim Biophys Acta Biomembr ; 1860(2): 467-474, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29100892

RESUMO

Membranes are the primary site of freezing injury during cryopreservation or vitrification of cells. Addition of cryoprotective agents (CPAs) can reduce freezing damage, but can also disturb membrane integrity causing leakage of intracellular constituents. The aim of this study was to investigate lipid-CPA interactions in a liposome model system to obtain insights in mechanisms of cellular protection and toxicity during cryopreservation or vitrification processing. Various CPAs were studied including dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), dimethyl formamide (DMF), and propylene glycol (PG). Protection against leakage of phosphatidylcholine liposomes encapsulated with carboxyfluorescein (CF) was studied upon CPA addition as well as after freezing-and-thawing. Molecular interactions between CPAs and phospholipid acyl chains and headgroups as well as membrane phase behavior were studied using Fourier transform infrared spectroscopy. A clear difference was observed between the effects of DMSO on PC-liposomes compared to the other CPAs tested, both for measurements on CF-retention and membrane phase behavior. All CPAs were found to inhibit membrane leakiness during freezing. However, exposure to high CPA concentrations already caused leakage before freezing, increasing in the order DMSO, EG, DMF/PG, and GLY. With DMSO, liposomes were able to withstand up to 6M concentrations compared to only 1M for GLY. Cholesterol addition to PC-liposomes increased membrane stability towards leakiness. DMSO was found to dehydrate the phospholipid headgroups while raising the membrane phase transition temperature, whereas the other CPAs caused an increase in the hydration level of the lipid headgroups while decreasing the membrane phase transition temperature.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Fosfatidilcolinas/química , Lipossomas Unilamelares/química , Vitrificação/efeitos dos fármacos , Crioprotetores/química , Dimetil Sulfóxido/química , Dimetil Sulfóxido/farmacologia , Etilenoglicol/química , Etilenoglicol/farmacologia , Fluoresceínas/química , Congelamento , Glicerol/química , Glicerol/farmacologia , Permeabilidade/efeitos dos fármacos , Propilenoglicol/química , Propilenoglicol/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura de Transição/efeitos dos fármacos
12.
Analyst ; 143(2): 420-428, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29236110

RESUMO

Cryopreservation can be used for long-term preservation of tissues and organs. It relies on using complex mixtures of cryoprotective agents (CPAs) to reduce the damaging effects of freezing, but care should be taken to avoid toxic effects of CPAs themselves. In order to rationally design cryopreservation strategies for tissues, it is important to precisely determine permeation kinetics of the protectants that are used to ensure maximum permeation, while minimizing the exposure time and toxicity effects. This is particularly challenging with protectant solutions consisting of multiple components each with different physical properties and diffusing at a different rate. In this study, we show that an attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) setup can be used to simultaneously monitor diffusion of multiple components in a mixture into tissues in real time. Diffusion studies were done with decellularized heart valves using a sucrose-DMSO mixture as well as vitrification solution VS83. To assess diffusion kinetics of different solutes in mixtures, the increase in specific infrared absorbance bands was monitored during diffusion through the tissue. Solute specific wavenumber ranges were selected, and the calculated area was assumed to be proportional to the CPA concentration in the tissue. A diffusion equation based on Fick's second law of diffusion fitted the experimental data quite well, and clear differences in permeation rates were observed among the different mixture components dependent on molecular size and physical properties.


Assuntos
Criopreservação , Crioprotetores/análise , Vitrificação , Animais , Difusão , Dimetil Sulfóxido , Congelamento , Valvas Cardíacas , Concentração Osmolar , Sacarose , Suínos
13.
Biochim Biophys Acta ; 1858(6): 1400-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27003129

RESUMO

The aim of this study was to investigate if membrane-impermeable molecules are taken up by fibroblasts when exposing the cells to membrane phase transitions and/or freezing-induced osmotic forces. The membrane-impermeable fluorescent dye lucifer yellow (LY) was used to visualize and quantify uptake during endocytosis, and after freezing-thawing. In addition, trehalose uptake after freezing and thawing was studied. Fourier transform infrared spectroscopic studies showed that fibroblasts display a minor non-cooperative phase transition during cooling at suprazero temperatures, whereas cells display strong highly cooperative fluid-to-gel membrane phase transitions during freezing, both in the absence and presence of protectants. Cells do not show uptake of LY upon passing the suprazero membrane phase transition at 30-10°C, whereas after freezing and thawing cells show intracellular LY equally distributed within the cell. Both, LY and trehalose are taken up by fibroblasts after freezing and thawing with loading efficiencies approaching 50%. When using 250 mM extracellular trehalose during cryopreservation, intracellular concentrations greater than 100 mM were determined after thawing. A plot of cryosurvival versus the cooling rate showed a narrow inverted-'U'-shaped curve with an optimal cooling rate of 40°C min(-1). Diluting cells cryopreserved with trehalose in isotonic cell culture medium resulted in a loss of cell viability, which was attributed to intracellular trehalose causing an osmotic imbalance. Taken together, mammalian cells can be loaded with membrane-impermeable compounds, including the protective agent trehalose, by subjecting the cells to freezing-induced osmotic stress.


Assuntos
Criopreservação , Congelamento , Trealose/metabolismo , Células 3T3 , Animais , Camundongos , Microscopia de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Biol Reprod ; 97(6): 892-901, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29121172

RESUMO

Nonviable freeze-dried sperm have intact chromatin and can be used for fertilization via intracytoplasmic sperm injection. Freeze-dried sperm preferably should be stored at 4°C or lower, because DNA damage accumulates during storage at room temperature. Disaccharides are known to protect biomolecules both during freezing and drying, by forming a glassy state. Their use is challenging because cellular membranes are normally impermeable for disaccharides. In the current study, we demonstrate that membrane impermeable compounds, including lucifer yellow and trehalose, are taken up by stallion sperm when exposed to freezing. Trehalose uptake likely occurs during freezing-induced membrane phase transitions. Stallion sperm was freeze-dried in various formulations consisting of reducing or nonreducing sugars combined with albumin as bulking agent. Chromatin stability was studied during storage at 37°C, using the flow cytometric sperm chromatin structure assay and microscopic assessment of chromatin dispersion and DNA fragmentation after electrophoresis. Freeze-drying did not affect sperm chromatin, irrespective of the formulation that was used. DNA fragmentation index (DFI) values ranged from 5 to 8%. If sperm was freeze-dried without protectants or in a combination of glucose and proteins, DNA damage rapidly accumulated during storage at 37°C, reaching DFI values of respectively 95 ± 4 and 64 ± 42% after 1 month. DFI values of sperm freeze-dried with sucrose or trehalose ranged between 9-11% and 33-52% after 1 and 3 months storage, respectively. In conclusion, freeze-drying sperm with disaccharides results in uptake during freezing, which greatly reduces chromatin degradation during dried storage.


Assuntos
Cromatina/ultraestrutura , Criopreservação , Dissacarídeos/metabolismo , Congelamento , Preservação do Sêmen/métodos , Animais , Fragmentação do DNA , Liofilização , Cavalos , Masculino , Espermatozoides , Sacarose/metabolismo , Trealose/metabolismo
15.
Reprod Fertil Dev ; 29(9): 1739-1750, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27755962

RESUMO

If the physiological balance between production and scavenging of reactive oxygen species (ROS) is shifted towards production of ROS this may result in accumulation of cell damage over time. In this study stallion spermatozoa were incubated with xanthine and xanthine oxidase (X-XO) to artificially generate defined levels of superoxide and hydrogen peroxide resulting in sub-lethal oxidative damage. The effects of X-XO treatment on various sperm characteristics were studied. Special emphasis was placed on sperm osmotic tolerance pre-freeze and its correlation with cryosurvival, given that cryopreservation exposes cells to osmotic stress. ROS accumulation occurred predominantly in the sperm midpiece region, where the mitochondria are located. Exposing spermatozoa to increasing X-XO concentrations resulted in a dose-dependent decrease in sperm motility. Percentages of plasma membrane-intact spermatozoa were not affected, whereas stability of membranes towards hypotonic stress decreased with increasing levels of induced oxidative stress. Infrared spectroscopic studies showed that X-XO treatment does not alter sperm membrane phase behaviour. Spermatozoa exposed to higher oxidative stress levels pre-freeze exhibited reduced cryosurvival. Centrifugation processing and addition of catalase were found to have little beneficial effect. Taken together, these results show that treatment of spermatozoa with X-XO resulted in different levels of intracellular ROS, which decreased sperm osmotic tolerance and cryosurvival.


Assuntos
Sobrevivência Celular/fisiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Criopreservação , Cavalos , Peróxido de Hidrogênio/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Preservação do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Superóxidos/metabolismo , Xantina/farmacologia , Xantina Oxidase/farmacologia
16.
Biochim Biophys Acta ; 1844(2): 430-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24321313

RESUMO

Decellularized tissues can be used as matrix implants. The aims of this study were to investigate protein stability and solvent accessibility in decellularized pulmonary heart valve tissues. Protein denaturation profiles of tissues were studied by differential scanning calorimetry. Protein solvent accessibility of tissue exposed to D2O, and diffusion kinetics of various protective molecules were studied by Fourier transform infrared spectroscopy. Little changes were observed in the protein denaturation temperature during storage, at either 5 or 40°C. Glycerol was found to stabilize proteins; it increased the protein denaturation temperature. The stabilizing effect of glycerol disappeared after washing the sample with saline solution. Hydrogen-to-deuterium exchange rates of protein amide groups were fastest in leaflet tissue, followed by artery and muscle tissue. Diffusion of glycerol was found to be fastest in muscle tissue, followed by artery and leaflet tissue. Diffusion coefficients were derived and used to estimate the time needed to reach saturation. Fixation of tissue with glutaraldehyde had little effects on exchange and diffusion rates. Diffusion rates decreased with increasing molecular size. Proteins in decellularized heart valve tissue are stable during storage. Glycerol increases protein stability in a reversible manner. Solvent accessibility studies of protein amide groups provide an additional tool to study proteins in tissues. Diffusion coefficients can be derived to simulate diffusion kinetics of protective molecules in tissues. This study provides novel tools to evaluate protein stability and solvent accessibility in tissues, which can be used to develop biopreservation strategies.


Assuntos
Valvas Cardíacas , Estabilidade Proteica , Solventes/farmacologia , Alicerces Teciduais , Animais , Varredura Diferencial de Calorimetria , Citoproteção/efeitos dos fármacos , Difusão , Glucose/farmacologia , Glicerol/farmacologia , Valvas Cardíacas/química , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/metabolismo , Derivados de Hidroxietil Amido/farmacologia , Cinética , Desnaturação Proteica/efeitos dos fármacos , Manejo de Espécimes , Espectroscopia de Infravermelho com Transformada de Fourier , Sacarose/farmacologia , Suínos , Alicerces Teciduais/química
17.
Reprod Fertil Dev ; 27(2): 285-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25482034

RESUMO

The aim of this study was to evaluate inter-individual variability in osmotic properties of stallion spermatozoa and its correlation with cryosurvival. In addition, temperature dependency of hypo-osmotic tolerance and membrane fluidity were studied. Stallion sperm membranes exhibited good resistance towards hypotonic stress in the 15-30 °C temperature range, whereas membrane stability was found to be decreased at 4 and 37 °C. Bull spermatozoa showed greater hypo-osmotic tolerance compared with stallion spermatozoa, especially at temperatures above 30 °C, which coincided with decreased membrane fluidity of bovine spermatozoa in this temperature range. The critical osmolality at 22 °C, at which half of the sperm population survived exposure to hypotonic saline solution, was found to vary between 55 and 170 mOsm kg(-1) among different stallions. Clear correlations were found for pre- versus post-freeze sperm motility and membrane integrity. Pre-freeze percentages of membrane-intact spermatozoa after exposure to hypotonic stress showed a weak correlation with sperm motility after cryopreservation. This correlation, however, was not found when data were corrected for initial numbers of membrane-intact spermatozoa in the sample. We thus conclude that studies on pre-freeze tolerance towards hypotonic stress cannot be used to predict sperm cryosurvival rates for individual stallions.


Assuntos
Membrana Celular/fisiologia , Sobrevivência Celular/fisiologia , Criopreservação/métodos , Cavalos/fisiologia , Pressão Osmótica/fisiologia , Espermatozoides/fisiologia , Animais , Cruzamento/métodos , Bovinos , Citometria de Fluxo , Alemanha , Masculino , Especificidade da Espécie , Espectroscopia de Infravermelho com Transformada de Fourier , Motilidade dos Espermatozoides/fisiologia , Temperatura
18.
Anim Reprod Sci ; 267: 107536, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38908169

RESUMO

Oocyte cryopreservation is increasingly being used in reproductive technologies for conservation and breeding purposes. Further development of oocyte cryopreservation techniques requires interdisciplinary insights in the underlying principles of cryopreservation. This review aims to serve this purpose by: (1) highlighting that preservation strategies can be rationally designed, (2) presenting mechanistic insights in volume and osmotic stress responses associated with CPA loading strategies and cooling, and (3) giving a comprehensive listing of oocyte specific biophysical membrane characteristics and commonly used permeation model equations. It is shown how transport models can be used to simulate the behavior of oocytes during cryopreservation processing steps, i.e., during loading of cryoprotective agents (CPAs), cooling with freezing as well as vitrification, warming and CPA unloading. More specifically, using defined cellular and membrane characteristics, the responses of oocytes during CPA (un)loading were simulated in terms of temperature- and CPA type-and-concentration-dependent changes in cell volume and intracellular solute concentration. In addition, in order to determine the optimal cooling rate for slow programmable cooling cryopreservation, the freezing-induced cell volume response was simulated at various cooling rates to estimate rates with tolerable limits. For vitrification, special emphasis was on prediction of the timing of reaching osmotic tolerance limits during CPA exposure, and the need to use step-wise CPA addition/removal protocols. In conclusion, we present simulations and schematic illustrations that explain the timing of events during slow cooling cryopreservation as well as vitrification, important for rationally designing protocols taking into account how different CPA types, concentrations and temperatures affect the oocyte.

19.
Biol Reprod ; 88(3): 68, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23325813

RESUMO

The aim of this study was to determine how different membrane-permeable and -impermeable cryoprotective agents modulate tolerance of stallion sperm to osmotic stress and stabilize membranes during cryopreservation. Special emphasis was on hydroxyl ethylene starch (HES), which exposes cells to minimal osmotic stress due to its large molecular weight. Percentages of motile sperm post-thaw were found to be similar when glycerol, sucrose, and HES were used at their optimal concentrations. Percentages of plasma membrane intact sperm after return to isotonic medium were highest for HES. Fourier transform infrared spectroscopy studies were carried out to study subzero membrane phase and permeability behavior. Cryoprotectants were shown to decrease the initial rate of membrane dehydration during freezing, decrease the activation energy for water transport, and increase the total extent of freezing-induced dehydration. Freezing studies with liposomes as a model system showed that only the membrane-permeable cryoprotective agents glycerol and ethylene glycol protected membranes against leakage, whereas egg yolk, sucrose, and HES did not. Differential scanning calorimetry studies showed that sucrose and HES raise the glass transition temperature of the freezing extender and the difference in heat capacity associated with the glass transition. This indicates that these compounds enable formation of a stable glassy matrix at higher subzero temperatures. Sperm cryosurvival rates can be increased by combining different cryoprotectants with different protective functions; membrane permeable cryoprotective agents stabilize membranes and modulate the rate of cellular dehydration, whereas di- and polysaccharides increase the glass transition temperature and facilitate storage and handling at higher subzero temperatures.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Criopreservação , Crioprotetores/farmacologia , Derivados de Hidroxietil Amido/farmacologia , Espermatozoides/efeitos dos fármacos , Animais , Varredura Diferencial de Calorimetria , Sobrevivência Celular , Corantes Fluorescentes , Cavalos , Lipossomos , Masculino , Pressão Osmótica , Espectroscopia de Infravermelho com Transformada de Fourier , Motilidade dos Espermatozoides
20.
Mol Membr Biol ; 29(6): 197-206, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22830958

RESUMO

FTIR and cryomicroscopy have been used to study mouse embryonic fibroblast cells (3T3) during freezing in the absence and presence of DMSO and glycerol. The results show that cell volume changes as observed by cryomicroscopy typically end at temperatures above -15°C, whereas membrane phase changes may continue until temperatures as low as -30°C. This implies that cellular dehydration precedes dehydration of the bound water surrounding the phospholipid head groups. Both DMSO and glycerol increase the membrane hydraulic permeability at subzero temperature and reduce the activation energy for water transport. Cryoprotective agents facilitate dehydration to continue at low subzero temperatures thereby decreasing the incidence of intracellular ice formation. The increased subzero membrane hydraulic permeability likely plays an important role in the cryoprotective action of DMSO and glycerol. In the presence of DMSO water permeability was found to be greater compared to that in the presence of glycerol. Two temperature regimes were identified in an Arrhenius plot of the membrane hydraulic permeability. The activation energy for water transport at temperature ranging from 0 to -10°C was found to be greater than that below -10°C. The non-linear Arrhenius behavior of Lp has been implemented in the water transport model to simulate cell volume changes during freezing. At a cooling rate of 1°C min(-1), ∼5% of the initial osmotically active water volume is trapped inside the cells at -30°C.


Assuntos
Crioprotetores/química , Congelamento , Células 3T3 , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Glicerol/farmacologia , Camundongos , Modelos Teóricos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA