Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(13): e202317256, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38289336

RESUMO

Powdery hexagonal boron nitride (h-BN), as an important material for electrochemical energy storage, has been typically synthesized in bulk and one/two-dimensional (1/2D) nanostructured morphologies. However, until now, no method has been developed to synthesize powdery three-dimensional (3D) h-BN. This work introduces a novel NaCl-glucose-assisted strategy to synthesize micron-sized 3D h-BN with a honeycomb-like structure and its proposed formation mechanism. We propose that NaCl acts as the template of 3D structure and promotes the nitridation reaction by adsorbing NH3 . Glucose facilitates the homogeneous coating of boric acid onto the NaCl surface via functionalizing the NaCl surface. During the nitridation reaction, boron oxides (BO4 and BO3 ) form from a dehydration reaction of boric acid, which is then reduced to O2 -B-N and O-B-N2 intermediates before finally being reduced to BN3 by NH3 . When incorporated into polyethylene oxide-based electrolytes for Li metal batteries, 5 wt % of 3D h-BN significantly enhances ionic conductivity and mechanical strength. Consequently, this composite electrolyte demonstrates superior electrochemical stability. It delivers 300 h of stable cycles in the Li//Li cell at 0.1 mA cm-2 and retains 89 % of discharge capacity (138.9 mAh g-1 ) after 100 cycles at 1 C in the LFP//Li full cell.

2.
Nano Lett ; 18(3): 2060-2066, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29504759

RESUMO

Within the last several years, metal halide perovskites such as methylammonium lead iodide, CH3NH3PbI3, have come to the forefront of scientific investigation as defect-tolerant, solution-processable semiconductors that exhibit excellent optoelectronic properties. The vast majority of study has focused on Pb-based perovskites, which have limited applications because of their inherent toxicity. To enable the broad application of these materials, the properties of lead-free halide perovskites must be explored. Here, two-dimensional, lead-free cesium tin iodide, (CsSnI3), perovskite nanoplates have been synthesized and characterized for the first time. These CsSnI3 nanoplates exhibit thicknesses of less than 4 nm and exhibit significant quantum confinement with photoluminescence at 1.59 eV compared to 1.3 eV in the bulk. Ab initio calculations employing the generalized gradient approximation of Perdew-Burke-Ernzerhof elucidate that although the dominant intrinsic defects in CsSnI3 do not introduce deep levels inside the band gap, their concentration can be quite high. These simulations also highlight that synthesizing and processing CsSnI3 in Sn-rich conditions can reduce defect density and increase stability, which matches insights gained experimentally. This improvement in the understanding of CsSnI3 represents a step toward the broader challenge of building a deeper understanding of Sn-based halide perovskites and developing design principles that will lead to their successful application in optoelectronic devices.

3.
Nano Lett ; 15(6): 4096-101, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25993088

RESUMO

As an earth-abundant p-type semiconductor, copper sulfide (Cu2S) is an attractive material for application in photovoltaic devices. However, it suffers from a minority carrier diffusion length that is less than the length required for complete light absorption. Core-shell nanowires and nanorods have the potential to alleviate this difficulty because they decouple the length scales of light absorption and charge collection. To achieve this geometry using Cu2S, cation exchange was applied to an array of CdS nanorods to produce well-defined CdS-Cu2S core-shell nanorods. Previous work has demonstrated single-nanowire photovoltaic devices from this material system, but in this work, the cation exchange chemistry has been applied to nanorod arrays to produce ensemble-level devices with microscale sizes. The core-shell nanorod array devices show power conversion efficiencies of up to 3.8%. In addition, these devices are stable when measured in air after nearly one month of storage in a desiccator. These results are a first step in the development of large-area nanostructured Cu2S-based photovoltaics that can be processed from solution.

4.
Nano Lett ; 15(8): 5519-24, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26192740

RESUMO

The nanowire and nanorod morphology offers great advantages for application in a range of optoelectronic devices, but these high-quality nanorod arrays are typically based on high temperature growth techniques. Here, we demonstrate the successful room temperature growth of a hybrid perovskite (CH3NH3PbBr3) nanorod array, and we also introduce a new low temperature anion exchange technique to convert the CH3NH3PbBr3 nanorod array into a CH3NH3PbI3 nanorod array while preserving morphology. We demonstrate the application of both these hybrid perovskite nanorod arrays for LEDs. This work highlights the potential utility of postsynthetic interconversion of hybrid perovskites for nanostructured optoelectronic devices such as LEDs, which enables new strategies for the application of hybrid perovskites.

5.
Nano Lett ; 14(11): 6418-23, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25343743

RESUMO

Atomically thin two-dimensional (2D) layered materials, including graphene, boron nitride, and transition metal dichalcogenides (TMDs), can exhibit novel phenomena distinct from their bulk counterparts and hold great promise for novel electronic and optoelectronic applications. Controlled growth of such 2D materials with different thickness, composition, and symmetry are of central importance to realize their potential. In particular, the ability to control the symmetry of TMD layers is highly desirable because breaking the inversion symmetry can lead to intriguing valley physics, nonlinear optical properties, and piezoelectric responses. Here we report the first chemical vapor deposition (CVD) growth of spirals of layered MoS2 with atomically thin helical periodicity, which exhibits a chiral structure and breaks the three-dimensional (3D) inversion symmetry explicitly. The spirals composed of tens of connected MoS2 layers with decreasing areas: each basal plane has a triangular shape and shrinks gradually to the summit when spiraling up. All the layers in the spiral assume an AA lattice stacking, which is in contrast to the centrosymmetric AB stacking in natural MoS2 crystals. We show that the noncentrosymmetric MoS2 spiral leads to a strong bulk second-order optical nonlinearity. In addition, we found that the growth of spirals involves a dislocation mechanism, which can be generally applicable to other 2D TMD materials.


Assuntos
Dissulfetos/química , Molibdênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Cristalização , Modelos Moleculares , Nanotecnologia , Volatilização
6.
Chem Mater ; 35(21): 9064-9072, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37982006

RESUMO

Lead-free perovskite nanocrystals are of interest due to their nontoxicity and potential application in the display industry. However, engineering their optical properties is nontrivial and demands an understanding of emission from both self-trapped and free excitons. Here, we focus on tuning silver-based double perovskite nanocrystals' optical properties via two iso-valent dopants, Bi and Sb. The photoluminescence quantum yield of the intrinsic Cs2Ag1-yNayInCl6 perovskite increased dramatically upon doping. However, the two dopants affect the optical properties very differently. We hypothesize that the differences arise from their differences in electronic level contributions and ionic sizes. This hypothesis is validated through absorption and temperature dependence photoluminescence measurements, namely, by employing the Huang-Rhys factor, which indicates the coupling of the exciton to the lattice environment. The larger ionic size of Bi also plays a role in inducing significant microstraining verified via synchrotron measurements. These differences make Bi more sensitive to doping concentration over antimony which displays brighter emission (QY ∼40%). Such understanding is important for engineering optical properties in double perovskites, especially in light of recent achievements in boosting the photoluminescence quantum yield.

7.
ACS Appl Mater Interfaces ; 12(23): 26258-26266, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32432467

RESUMO

The neural system is a multifunctional perceptual learning system. Our brain can perceive different kinds of information to form senses, including touch, sight, hearing, and so on. Mimicking such perceptual learning systems is critical for neuromorphic platform applications. Here, an artificial tactile perceptual neuron is realized by utilizing electronic skins (E-skin) with oxide neuromorphic transistors, and this artificial tactile perceptual neuron successfully simulates biological tactile afferent nerves. First, the E-skin device is constructed using microstructured polydimethylsiloxane membranes coated with Ag/indium tin oxide (ITO) layers, exhibiting good sensitivities of ∼2.1 kPa-1 and fast response time of tens of milliseconds. Then, the chitosan-based electrolyte-gated ITO neuromorphic transistor is fabricated and exhibits high performance and synaptic responses. Finally, the integrated artificial tactile perceptual neuron demonstrates pressure excitatory postsynaptic current and paired-pulse facilitation. The artificial tactile perceptual neuron is featured with low energy consumption as low as ∼0.7 nJ. Moreover, it can mimic acute and chronic pain and nociceptive characteristics of allodynia and hyperalgesia in biological nociceptors. Interestingly, the artificial tactile perceptual neuron can employ "Morse code" pressure-interpreting scheme. This simple and low-cost approach has excellent potential for applications including but not limited to intelligent humanoid robots and replacement neuroprosthetics.


Assuntos
Biomimética/instrumentação , Modelos Neurológicos , Pressão , Dispositivos Eletrônicos Vestíveis , Neurônios Aferentes , Robótica/instrumentação , Transistores Eletrônicos
8.
Science ; 351(6268): 74-7, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26721997

RESUMO

Improving natural photosynthesis can enable the sustainable production of chemicals. However, neither purely artificial nor purely biological approaches seem poised to realize the potential of solar-to-chemical synthesis. We developed a hybrid approach, whereby we combined the highly efficient light harvesting of inorganic semiconductors with the high specificity, low cost, and self-replication and -repair of biocatalysts. We induced the self-photosensitization of a nonphotosynthetic bacterium, Moorella thermoacetica, with cadmium sulfide nanoparticles, enabling the photosynthesis of acetic acid from carbon dioxide. Biologically precipitated cadmium sulfide nanoparticles served as the light harvester to sustain cellular metabolism. This self-augmented biological system selectively produced acetic acid continuously over several days of light-dark cycles at relatively high quantum yields, demonstrating a self-replicating route toward solar-to-chemical carbon dioxide reduction.


Assuntos
Ácido Acético/metabolismo , Biocatálise , Moorella/metabolismo , Fotossíntese , Compostos de Cádmio/química , Dióxido de Carbono/metabolismo , Luz , Microscopia Eletrônica , Moorella/efeitos da radiação , Moorella/ultraestrutura , Nanopartículas/química , Fotoperíodo , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA