Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 28(19): 3177-3181, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30172617

RESUMO

From a high throughput screening of commercially available libraries against nontuberculous mycobacteria and Mycobacterium tuberculosis, numerous hits were identified with moderate activity. Extensive medicinal chemistry optimization has led to a series of potent benzothiazole amide antimycobacterial agents. Replacement of the adamantyl group with cyclohexyl derivatives and further development of this series resulted in an advanced lead compound, CRS400393, which demonstrated excellent potency and a mycobacteria-specific spectrum of activity. MIC values ranged from 0.03 to 0.12 µg/mL against Mycobacterium abscessus and other rapid-grower NTM, and 1-2 µg/mL against Mycobacterium avium complex. The preliminary mechanism of action studies suggested these agents may target MmpL3, a mycobacterial mycolic acid transporter. The series has demonstrated in vivo efficacy in a proof of concept mouse model of M. abscessus infection.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Benzotiazóis/química , Benzotiazóis/farmacologia , Descoberta de Drogas , Mycobacterium/efeitos dos fármacos , Amidas/química , Animais , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium/classificação , Especificidade da Espécie , Relação Estrutura-Atividade
2.
J Med Chem ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088797

RESUMO

Mesenchymal-epithelial transition factor (MET) is a receptor tyrosine kinase that serves a critical function in numerous developmental, morphogenic, and proliferative signaling pathways. If dysregulated, MET has been shown to be involved in the development and survival of several cancers, including non-small cell lung cancer (NSCLC), renal cancer, and other epithelial tumors. Currently, the clinical efficacy of FDA approved MET inhibitors is limited by on-target acquired resistance, dose-limiting toxicities, and less than optimal efficacy against brain metastasis. Therefore, there is still an unmet medical need for the development of MET inhibitors to address these issues. Herein we report the application of structure-based design for the discovery and development of a novel class of brain-penetrant MET inhibitors with enhanced activity against clinically relevant mutations and improved selectivity. Compound 13 with a MET D1228N cell line IC50 value of 23 nM showed good efficacy in an intracranial tumor model and increased the median overall survival of the animals to 100% when dosed orally at 100 mg/kg daily for 21 days.

3.
ACS Med Chem Lett ; 14(12): 1673-1681, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116446

RESUMO

SHP2 has emerged as an important target for oncology small-molecule drug discovery. As a nonreceptor tyrosine phosphatase within the MAPK pathway, it has been shown to control cell growth, differentiation, and oncogenic transformation. We used structure-based design to find a novel class of potent and orally bioavailable SHP2 inhibitors. Our efforts led to the discovery of the 5-azaquinoxaline as a new core for developing this class of compounds. Optimization of the potency and properties of this scaffold generated compound 30, that exhibited potent in vitro SHP2 inhibition and showed excellent in vivo efficacy and pharmacokinetic profile.

4.
Cancer Discov ; 13(8): 1789-1801, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37269335

RESUMO

Rationally targeted therapies have transformed cancer treatment, but many patients develop resistance through bypass signaling pathway activation. PF-07284892 (ARRY-558) is an allosteric SHP2 inhibitor designed to overcome bypass-signaling-mediated resistance when combined with inhibitors of various oncogenic drivers. Activity in this setting was confirmed in diverse tumor models. Patients with ALK fusion-positive lung cancer, BRAFV600E-mutant colorectal cancer, KRASG12D-mutant ovarian cancer, and ROS1 fusion-positive pancreatic cancer who previously developed targeted therapy resistance were treated with PF-07284892 on the first dose level of a first-in-human clinical trial. After progression on PF-07284892 monotherapy, a novel study design allowed the addition of oncogene-directed targeted therapy that had previously failed. Combination therapy led to rapid tumor and circulating tumor DNA (ctDNA) responses and extended the duration of overall clinical benefit. SIGNIFICANCE: PF-07284892-targeted therapy combinations overcame bypass-signaling-mediated resistance in a clinical setting in which neither component was active on its own. This provides proof of concept of the utility of SHP2 inhibitors in overcoming resistance to diverse targeted therapies and provides a paradigm for accelerated testing of novel drug combinations early in clinical development. See related commentary by Hernando-Calvo and Garralda, p. 1762. This article is highlighted in the In This Issue feature, p. 1749.


Assuntos
Neoplasias Pulmonares , Proteínas Tirosina Quinases , Humanos , Proteínas Tirosina Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Oncogenes , Assistência Centrada no Paciente
5.
ACS Catal ; 7(7): 4775-4779, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-29755827

RESUMO

A convenient copper-catalyzed intramolecular/intermolecular alkene diamination reaction to synthesize 3-aminomethyl-functionalized isoxazolidines under mild reaction conditions and with generally high levels of diastereoselectivity was achieved. This reaction demonstrates that previously underutilized unsaturated carbamates are good [Cu]-catalyzed diamination substrates. Sulfonamides, anilines, benzamide, morpholine, and piperidine can serve as the external amine source. This relatively broad amine range is attributed to the mild reaction conditions. Reduction of the N-O bond could also be achieved, revealing the corresponding 3,4-diamino-1-alcohols efficiently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA