Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 70(1): e12927, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35662328

RESUMO

The Cyanidiales are a group of mostly thermophilic and acidophilic red algae that thrive near volcanic vents. Despite their phylogenetic relationship, the reduced genomes of Cyanidioschyzon merolae and Galdieria sulphuraria are strikingly different with respect to pre-mRNA splicing, a ubiquitous eukaryotic feature. Introns are rare and spliceosomal machinery is extremely reduced in C. merolae, in contrast to G. sulphuraria. Previous studies also revealed divergent spliceosomes in the mesophilic red alga Porphyridium purpureum and the red algal derived plastid of Guillardia theta (Cryptophyta), along with unusually high levels of unspliced transcripts. To further examine the evolution of splicing in red algae, we compared C. merolae and G. sulphuraria, investigating splicing levels, intron position, intron sequence features, and the composition of the spliceosome. In addition to identifying 11 additional introns in C. merolae, our transcriptomic analysis also revealed typical eukaryotic splicing in G. sulphuraria, whereas most transcripts in C. merolae remain unspliced. The distribution of intron positions within their host genes was examined to provide insight into patterns of intron loss in red algae. We observed increasing variability of 5' splice sites and branch donor regions with increasing intron richness. We also found these relationships to be connected to reductions in and losses of corresponding parts of the spliceosome. Our findings highlight patterns of intron and spliceosome evolution in related red algae under the pressures of genome reduction.


Assuntos
Precursores de RNA , Rodófitas , Precursores de RNA/genética , Precursores de RNA/metabolismo , Filogenia , Splicing de RNA , Spliceossomos/genética , Spliceossomos/metabolismo , Rodófitas/genética , Íntrons/genética , Eucariotos/genética , Criptófitas/genética
2.
J Eukaryot Microbiol ; 68(3): e12844, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33569840

RESUMO

Pre-mRNA splicing is a highly conserved eukaryotic process, but our understanding of it is limited by a historical focus on well-studied organisms such as humans and yeast. There is considerable diversity in mechanisms and components of pre-mRNA splicing, especially in lineages that have evolved under the pressures of genome reduction. The ancestor of red algae is thought to have undergone genome reduction prior to the lineage's radiation, resulting in overall gene and intron loss in extant groups. Previous studies on the extremophilic red alga Cyanidioschyzon merolae revealed an intron-sparse genome with a highly reduced spliceosome. To determine whether these features applied to other red algae, we investigated multiple aspects of pre-mRNA splicing in the mesophilic red alga Porphyridium purpureum. Through strand-specific RNA-Seq, we observed high levels of intron retention across a large number of its introns, and nearly half of the transcripts for these genes are not spliced at all. We also discovered a relationship between variability of 5' splice site sequences and levels of splicing. To further investigate the connections between intron retention and splicing machinery, we bioinformatically assembled the P. purpureum spliceosome, and biochemically verified the presence of snRNAs. While most other core spliceosomal components are present, our results suggest highly divergent or missing U1 snRNP proteins, despite the presence of an uncharacteristically long U1 snRNA. These unusual aspects highlight the diverse nature of pre-mRNA splicing that can be seen in lesser-studied eukaryotes, raising the importance of investigating fundamental eukaryotic processes outside of model organisms.


Assuntos
Porphyridium , Rodófitas , Humanos , Íntrons/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Rodófitas/genética , Saccharomyces cerevisiae , Spliceossomos/genética , Spliceossomos/metabolismo
3.
Genome Biol Evol ; 10(6): 1573-1583, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860351

RESUMO

Eukaryotic genes are interrupted by introns that are removed in a conserved process known as pre-mRNA splicing. Though well-studied in select model organisms, we are only beginning to understand the variation and diversity of this process across the tree of eukaryotes. We explored pre-mRNA splicing and other features of transcription in nucleomorphs, the highly reduced remnant nuclei of secondary endosymbionts. Strand-specific transcriptomes were sequenced from the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans, whose plastids are derived from red and green algae, respectively. Both organisms exhibited elevated nucleomorph antisense transcription and gene expression relative to their respective nuclei, suggesting unique properties of gene regulation and transcriptional control in nucleomorphs. Marked differences in splicing were observed between the two nucleomorphs: the few introns of the G. theta nucleomorph were largely retained in mature transcripts, whereas the many short introns of the B. natans nucleomorph are spliced at typical eukaryotic levels (>90%). These differences in splicing levels could be reflecting the ancestries of the respective plastids, the different intron densities due to independent genome reduction events, or a combination of both. In addition to extending our understanding of the diversity of pre-mRNA splicing across eukaryotes, our study also indicates potential links between splicing, antisense transcription, and gene regulation in reduced genomes.


Assuntos
Núcleo Celular/genética , Variação Genética/genética , Genoma/genética , Precursores de RNA/genética , Splicing de RNA/genética , Cercozoários/genética , Clorófitas/genética , Criptófitas/genética , Eucariotos/genética , Evolução Molecular , Redes Reguladoras de Genes/genética , Íntrons/genética , Plastídeos/genética , RNA Antissenso/genética , Transcrição Gênica/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA