Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 38(23): 5429-5440, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769265

RESUMO

LIM-domain containing transcription factors (LIM-TFs) are conserved factors important for embryogenesis. The specificity of these factors in transcriptional regulation is conferred by the complexes that they form with other proteins such as LIM-domain-binding (Ldb) proteins and LIM-domain only (LMO) proteins. Unlike LIM-TFs, these proteins do not bind DNA directly. LMO proteins are negative regulators of LIM-TFs and function by competing with LIM-TFs for binding to Ldb's. Although the LIM-TF Lmx1a is expressed in the developing mouse hindbrain, which provides many of the extrinsic signals for inner ear formation, conditional knock-out embryos of both sexes show that the inner ear source of Lmx1a is the major contributor of ear patterning. In addition, we have found that the reciprocal interaction between Lmx1a and Lmo4 (a LMO protein within the inner ear) mediates the formation of both vestibular and auditory structures. Lmo4 negatively regulates Lmx1a to form the three sensory cristae, the anterior semicircular canal, and the shape of the utricle in the vestibule. Furthermore, this negative regulation blocks ectopic sensory formation in the cochlea. In contrast, Lmx1a negatively regulates Lmo4 in mediating epithelial resorption of the canal pouch, which gives rise to the anterior and posterior semicircular canals. We also found that Lmx1a is independently required for the formation of the endolymphatic duct and hair cells in the basal cochlear region.SIGNIFICANCE STATEMENT The mammalian inner ear is a structurally complex organ responsible for detecting sound and maintaining balance. Failure to form the intricate 3D structure of this organ properly during development most likely will result in sensory deficits on some level. Here, we provide genetic evidence that a transcription factor, Lmx1a, interacts with its negative regulator, Lmo4, to pattern various vestibular and auditory components of the mammalian inner ear. Identifying these key molecules that mediate formation of this important sensory organ will be helpful for designing strategies and therapeutics to alleviate hearing loss and balance disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Orelha Interna/embriologia , Proteínas com Domínio LIM/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição/metabolismo , Animais , Camundongos , Camundongos Knockout
2.
Dev Biol ; 402(2): 216-28, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25872183

RESUMO

Understanding the mechanisms that regulate the transition between the proliferative and a post-mitotic state of retinal progenitor cells (RPCs) is key to advancing our knowledge of retinal growth and maturation. In the present study we determined that during zebrafish embryonic retinal neurogenesis, two paired-type homeobox genes - vsx2 and dmbx1 - function in a mutually antagonistic manner. We demonstrate that vsx2 gene expression requires active Fgf signaling and that this in turn suppresses dmbx1 expression and maintains cells in an undifferentiated, proliferative RPC state. This vsx2-dependent RPC state can be prolonged cell-autonomously by knockdown of dmbx1, or it can be suppressed prematurely by the over-expression of dmbx1, which we show can inhibit vsx2 expression and lead to precocious neuronal differentiation. dmbx1 loss of function also results in altered expression of canonical cell cycle genes, and in particular up-regulation of ccnd1, which correlates with our previous finding of a prolonged RPC cell cycle. By knocking down ccnd1 and dmbx1 simultaneously, we show that RPCs can overcome this phenotype to exit the cell cycle on time and differentiate normally into retinal neurons. Collectively, our data provide novel insight into the mechanism that enables RPCs to exit the cell cycle through a previously unrecognized antagonistic interaction of two paired-type homeobox genes that are central regulators of an Fgf-vsx2-dmbx1-ccnd1 signaling axis.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurogênese/fisiologia , Retina/embriologia , Células-Tronco/fisiologia , Peixe-Zebra/embriologia , Animais , Western Blotting , Bromodesoxiuridina , Pontos de Checagem do Ciclo Celular/genética , Ciclina D1/metabolismo , Primers do DNA/genética , Proteínas do Olho/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Retina/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
BMC Dev Biol ; 10: 100, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20860823

RESUMO

BACKGROUND: The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome. RESULTS: Using gene knockdown experiments we examined the function of the dmbx1 gene paralogs in zebrafish, dmbx1a and dmbx1b in regulating neurogenesis in the developing retina and midbrain. Dose-dependent loss of dmbx1a and dmbx1b function causes a significant reduction in growth of the midbrain and retina that is evident between 48-72 hpf. We show that this phenotype is not due to patterning defects or persistent cell death, but rather a deficit in progenitor cell cycle exit and differentiation. Analyses of the morphant retina or anterior hindbrain indicate that paralogous function is partially diverged since loss of dmbx1a is more severe than loss of dmbx1b. Molecular evolutionary analyses of the Dmbx1 genes suggest that while this gene family is conservative in its evolution, there was a dramatic change in selective constraint after the duplication event that gave rise to the dmbx1a and dmbx1b gene families in teleost fish, suggestive of positive selection. Interestingly, in contrast to zebrafish dmbx1a, over expression of the mouse Dmbx1 gene does not functionally compensate for the zebrafish dmbx1a knockdown phenotype, while over expression of the dmbx1b gene only partially compensates for the dmbx1a knockdown phenotype. CONCLUSION: Our data suggest that both zebrafish dmbx1a and dmbx1b genes are retained in the fish genome due to their requirement during midbrain and retinal neurogenesis, although their function is partially diverged. At the cellular level, Dmbx1 regulates cell cycle exit and differentiation of progenitor cells. The unexpected observation of putative post-duplication positive selection of teleost Dmbx1 genes, especially dmbx1a, and the differences in functionality between the mouse and zebrafish genes suggests that the teleost Dmbx1 genes may have evolved a diverged function in the regulation of neurogenesis.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Mesencéfalo , Fatores de Transcrição Otx/genética , Isoformas de Proteínas/genética , Retina , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/patologia , Embrião não Mamífero/fisiologia , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio , Mesencéfalo/embriologia , Mesencéfalo/crescimento & desenvolvimento , Mesencéfalo/patologia , Camundongos , Neurogênese/fisiologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Fatores de Transcrição Otx/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retina/embriologia , Retina/crescimento & desenvolvimento , Retina/patologia , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
5.
Stem Cell Reports ; 7(3): 454-470, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27546533

RESUMO

Proliferating progenitor cells undergo changes in competence to give rise to post-mitotic progeny of specialized function. These cell-fate transitions typically involve dynamic regulation of gene expression by histone methyltransferase (HMT) complexes. However, the composition, roles, and regulation of these assemblies in regulating cell-fate decisions in vivo are poorly understood. Using unbiased affinity purification and mass spectrometry, we identified the uncharacterized C2H2-like zinc finger protein ZNF644 as a G9a/GLP-interacting protein and co-regulator of histone methylation. In zebrafish, functional characterization of ZNF644 orthologs, znf644a and znf644b, revealed complementary roles in regulating G9a/H3K9me2-mediated gene silencing during neurogenesis. The non-overlapping requirements for znf644a and znf644b during retinal differentiation demarcate critical aspects of retinal differentiation programs regulated by differential G9a-ZNF644 associations, such as transitioning proliferating progenitor cells toward differentiation. Collectively, our data point to ZNF644 as a critical co-regulator of G9a/H3K9me2-mediated gene silencing during neuronal differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Biomarcadores , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular/genética , Inativação Gênica , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Metilação , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Retina/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra
6.
Stem Cells Dev ; 21(15): 2838-51, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22594450

RESUMO

Inducing a stable and predictable program of neural cell fate in pluripotent cells in vitro is an important goal for utilizing these cells for modeling human disease mechanisms. However, the extent to which in vitro neural specification recapitulates in vivo neural specification remains to be fully established. We previously demonstrated that in the mouse embryo, activation of fibroblast growth factor (FGF) signalling promotes definitive neural stem cell (NSC) development through the upregulation of the transcription factor Zfhx1b. Here, we asked whether Zfhx1b is similarly required during neural lineage development of embryonic stem (ES) cells. Zfhx1b gene expression is rapidly upregulated in mouse ES cells cultured in a permissive neural-inducing environment, compared to ES cells in a standard pluripotency maintenance environment, and is potentiated by FGF signalling. However, overexpression of Zfhx1b in ES cells in maintenance conditions, containing serum and leukemia inhibitory factor (LIF), is sufficient to induce Sox1 expression, a marker found in neural precursors and to promote definitive NSC colony formation. Knockdown of Zfhx1b in ES cells using siRNA did not affect the initial transition of ES cells to a neural cell fate, but did diminish the ability of these neural cells to develop further into definitive NSCs. Thus, our findings using ES cells are congruent with evidence from mouse embryos and support a model, whereby intercellular FGF signaling induces Zfhx1b, which promotes the development of definitive NSCs subsequent to an initial neural specification event that is independent of this pathway.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/fisiologia , Células-Tronco Neurais/metabolismo , Proteínas Repressoras/fisiologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Padronização Corporal , Células Cultivadas , Técnicas de Cocultura , Células-Tronco Embrionárias/metabolismo , Fator 8 de Crescimento de Fibroblasto/fisiologia , Expressão Gênica , Glicoproteínas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fator Inibidor de Leucemia/fisiologia , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Regulação para Cima , Homeobox 2 de Ligação a E-box com Dedos de Zinco
7.
Dev Genes Evol ; 216(10): 647-54, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16733737

RESUMO

The expression of midbrain homeobox-1 (mbx1) defines a discrete region in the vertebrate neural plate that will give rise to the mesencephalon, as well as subregions of the diencephalon and retinal field. Here, we report on the identification and cloning of a second Mbx gene in zebrafish, termed mbx2. Genomic sequence comparison suggests that mbx1 and mbx2 are derived from the duplication of a single putative ancestral gene that is conserved in other vertebrates as a single copy gene. Furthermore, phylogenetic analyses indicate that the mbx genes belong to a novel subgroup of paired-like homeobox genes. Finally, quantitative reverse transcriptase-PCR and whole mount in situ hybridization experiments revealed a pattern of partial spatiotemporal expression divergence between the mbx paralogs that correlates with sequence divergence in noncoding regulatory domains. Our data support a subfunctionalization model that may explain the retention of duplicate mbx genes in teleosts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas de Homeodomínio/genética , Proteínas de Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Proteínas de Homeodomínio/química , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Peixe-Zebra , Proteínas de Peixe-Zebra/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA