Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
STAR Protoc ; 4(4): 102750, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38041820

RESUMO

Studying skeletal muscle stem cells (MuSCs) quiescence is challenging as they quickly activate within hours of isolation from muscle. Here, we present a protocol to disassociate and characterize fixed peptides from quiescent MuSCs using trapped ion-mobility time-of-flight mass spectrometry (MS). We describe steps for mouse perfusion, fluorescence-activated cell sorting preparation and sorting, protein extraction, digestion, and liquid chromatography MS analysis. This protocol can be applied to other less-abundant somatic stem cell types using mouse lines with a reporter. For complete details on the use and execution of this protocol, please refer to Zeng et al. (2022, 2023).1,2.


Assuntos
Células-Tronco Adultas , Proteômica , Animais , Camundongos , Fibras Musculares Esqueléticas , Divisão Celular , Movimento Celular
2.
J Am Soc Mass Spectrom ; 22(2): 233-44, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21472583

RESUMO

Peptides adducted with different divalent Group IIB metal ions (Zn(2+), Cd(2+), and Hg(2+)) were found to give very different ECD mass spectra. ECD of Zn(2+) adducted peptides gave series of c-/z-type fragment ions with and without metal ions. ECD of Cd(2+) and Hg(2+) adducted model peptides gave mostly a-type fragment ions with M(+•) and fragment ions corresponding to losses of neutral side chain from M(+•). No detectable a-ions could be observed in ECD spectra of Zn(2+) adducted peptides. We rationalized the present findings by invoking both proton-electron recombination and metal-ion reduction processes. As previously postulated, divalent metal-ions adducted peptides could adopt several forms, including (a) [M + Cat](2+), (b) [(M + Cat - H) + H](2+), and (c) [(M + Cat - 2H) + 2H](2+). The relative population of these precursor ions depends largely on the acidity of the metal-ion peptide complexes. Peptides adducted with divalent metal-ions of small ionic radii (i.e., Zn(2+)) would form predominantly species (b) and (c); whereas peptides adducted with metal ions of larger ionic radii (i.e., Hg(2+)) would adopt predominantly species (a). Species (b) and (c) are believed to be essential for proton-electron recombination process to give c-/z-type fragments via the labile ketylamino radical intermediates. Species (c) is particularly important for the formation of non-metalated c-/z-type fragments. Without any mobile protons, species (a) are believed to undergo metal ion reduction and subsequently induce spontaneous electron transfer from the peptide moiety to the charge-reduced metal ions. Depending on the exothermicity of the electron transfer reaction, the peptide radical cations might be formed with substantial internal energy and might undergo further dissociation to give structural related fragment ions.


Assuntos
Metais Pesados/química , Peptídeos/química , Sequência de Aminoácidos , Aminoácidos/química , Cátions/química , Radicais Livres/química , Espectrometria de Massas
3.
J Am Soc Mass Spectrom ; 22(12): 2232-45, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21952786

RESUMO

Electron capture dissociation (ECD) of model peptides adducted with first row divalent transition metal ions, including Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+), were investigated. Model peptides with general sequence of ZGGGXGGGZ were used as probes to unveil the ECD mechanism of metalated peptides, where X is either V or W; and Z is either R or N. Peptides metalated with different divalent transition metal ions were found to generate different ECD tandem mass spectra. ECD spectra of peptides metalated by Mn(2+) and Zn(2+) were similar to those generated by ECD of peptides adducted with alkaline earth metal ions. Series of c-/z-type fragment ions with and without metal ions were observed. ECD of Fe(2+), Co(2+), and Ni(2+) adducted peptides yielded abundant metalated a-/y-type fragment ions; whereas ECD of Cu(2+) adducted peptides generated predominantly metalated b-/y-type fragment ions. From the present experimental results, it was postulated that electronic configuration of metal ions is an important factor in determining the ECD behavior of the metalated peptides. Due presumably to the stability of the electronic configuration, metal ions with fully-filled (i.e., Zn(2+)) and half filled (i.e., Mn(2+)) d-orbitals might not capture the incoming electron. Dissociation of the metal ions adducted peptides would proceed through the usual ECD channel(s) via "hot-hydrogen" or "superbase" intermediates, to form series of c-/z(•)- fragments. For other transition metal ions studied, reduction of the metal ions might occur preferentially. The energy liberated by the metal ion reduction would provide enough internal energy to generate the "slow-heating" type of fragment ions, i.e., metalated a-/y- fragments and metalated b-/y- fragments.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/química , Elementos de Transição/química , Sequência de Aminoácidos , Bradicinina/química , Cátions/química , Elétrons , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA