Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 140(23): 2490-2499, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36040485

RESUMO

von Willebrand factor (VWF) is a multimeric blood protein that acts as a mechanical probe, responding to changes in flow to initiate platelet plug formation. Previously, our laboratory tests had shown that using single-molecule imaging that shear stress can extend surface-tethered VWF, but paradoxically, we found that the required shear stress was higher than reported for free-in-flow VWF, an observation inconsistent with basic physical principles. To resolve this inconsistency critical to VWF's molecular mechanism, we measured free-VWF extension in shear flow using pulsed laser stroboscopic imaging of single molecules. Here, laser pulses of different durations are used to capture multiple images of the same molecule within each frame, enabling accurate length measurements in the presence of motion blur. At high shear stresses, we observed a mean shift in VWF extension of <200 nm, much shorter than the multiple-micron extensions previously reported with no evidence for the predicted sharp globule-stretch conformational transition. Modeling VWF with a Brownian dynamics simulation, our results were consistent with VWF behaving as an uncollapsed polymer rather than the theorized compact ball. The muted response of free VWF to high shear rates implies that the tension experienced by free VWF in physiological shear flow is lower than indicated by previous reports and that tethering to platelets or the vessel wall is required to mechanically activate VWF adhesive function for primary hemostasis.


Assuntos
Imagem Individual de Molécula , Fator de von Willebrand
2.
Malar J ; 23(1): 68, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443939

RESUMO

BACKGROUND: Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programmes (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. METHODS: This study examined parasites from 3147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, a series of Poisson generalized linear mixed-effects models were constructed to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. RESULTS: Model-predicted incidence was compared with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (< 10/1000/annual [‰]). CONCLUSIONS: When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence > 10‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was < 10‰, many of the correlations between parasite genetics and incidence were reversed, which may reflect the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.


Assuntos
Malária , Superinfecção , Humanos , Senegal/epidemiologia , Incidência , Plasmodium falciparum/genética
3.
J Am Chem Soc ; 145(51): 27916-27921, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38096567

RESUMO

The ability to accurately map the 3D geometry of single-molecule complexes in trace samples is a challenging goal that would lead to new insights into molecular mechanics and provide an approach for single-molecule structural proteomics. To enable this, we have developed a high-resolution force spectroscopy method capable of measuring multiple distances between labeled sites in natively folded protein complexes. Our approach combines reconfigurable nanoscale devices, we call DNA nanoswitch calipers, with a force-based barcoding system to distinguish each measurement location. We demonstrate our approach by reconstructing the tetrahedral geometry of biotin-binding sites in natively folded streptavidin, with 1.5-2.5 Å agreement with previously reported structures.


Assuntos
Biotina , Nanotecnologia , Estreptavidina/química , Biotina/química , Nanotecnologia/métodos , Sítios de Ligação , DNA
4.
J Am Chem Soc ; 145(6): 3276-3282, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716175

RESUMO

For many classes of biomolecules, population-level heterogeneity is an essential aspect of biological function─from antibodies produced by the immune system to post-translationally modified proteins that regulate cellular processes. However, heterogeneity is difficult to fully characterize for multiple reasons: (i) single-molecule approaches are needed to avoid information lost by ensemble-level averaging, (ii) sufficient statistics must be gathered on both a per-molecule and per-population level, and (iii) a suitable analysis framework is required to make sense of a potentially limited number of intrinsically noisy measurements. Here, we introduce an approach that overcomes these difficulties by combining three techniques: a DNA nanoswitch construct to repeatedly interrogate the same molecule, a benchtop centrifuge force microscope (CFM) to obtain thousands of statistics in a highly parallel manner, and a Bayesian nonparametric (BNP) inference method to resolve separate subpopulations with distinct kinetics. We apply this approach to characterize commercially available antibodies and find that polyclonal antibody from rabbit serum is well-modeled by a mixture of three subpopulations. Our results show how combining a spatially and temporally multiplexed nanoswitch-CFM assay with BNP analysis can help resolve complex biomolecular interactions in heterogeneous samples.


Assuntos
Anticorpos , Nanotecnologia , Animais , Humanos , Coelhos , Teorema de Bayes , Microscopia de Força Atômica/métodos , Cinética , Centrifugação/métodos
5.
Blood ; 138(23): 2425-2434, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34882208

RESUMO

von Willebrand factor (VWF) is an ultralong concatemeric protein important in hemostasis and thrombosis. VWF molecules can associate with other VWF molecules, but little is known about the mechanism. Hydrodynamic drag exerts tensile force on surface-tethered VWF that extends it and is maximal at the tether point and declines linearly to 0 at the downstream free end. Using single-molecule fluorescence microscopy, we directly visualized the kinetics of binding of free VWF in flow to surface-tethered single VWF molecules. We showed that self-association requires elongation of tethered VWF and that association increases with tension in tethered VWF, reaches half maximum at a characteristic tension of ∼10 pN, and plateaus above ∼25 pN. Association is reversible and hence noncovalent; a sharp decrease in shear flow results in rapid dissociation of bound VWF. Tethered primary VWF molecules can recruit more than their own mass of secondary VWF molecules from the flow stream. Kinetics show that instead of accelerating, the rate of accumulation decreases with time, revealing an inherently self-limiting self-association mechanism. We propose that this may occur because multiple tether points between secondary and primary VWF result in lower tension on the secondary VWF, which shields more highly tensioned primary VWF from further association. Glycoprotein Ibα (GPIbα) binding and VWF self-association occur in the same region of high tension in tethered VWF concatemers; however, the half-maximal tension required for activation of GPIbα is higher, suggesting differences in molecular mechanisms. These results have important implications for the mechanism of platelet plug formation in hemostasis and thrombosis.


Assuntos
Fator de von Willebrand/análise , Humanos , Hidrodinâmica , Cinética , Multimerização Proteica , Proteínas Recombinantes/análise , Imagem Individual de Molécula
6.
PLoS Comput Biol ; 17(12): e1009690, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932560

RESUMO

Since the global withdrawal of Sabin 2 oral poliovirus vaccine (OPV) from routine immunization, the Global Polio Eradication Initiative (GPEI) has reported multiple circulating vaccine-derived poliovirus type 2 (cVDPV2) outbreaks. Here, we generated an agent-based, mechanistic model designed to assess OPV-related vaccine virus transmission risk in populations with heterogeneous immunity, demography, and social mixing patterns. To showcase the utility of our model, we present a simulation of mOPV2-related Sabin 2 transmission in rural Matlab, Bangladesh based on stool samples collected from infants and their household contacts during an mOPV2 clinical trial. Sabin 2 transmission following the mOPV2 clinical trial was replicated by specifying multiple, heterogeneous contact rates based on household and community membership. Once calibrated, the model generated Matlab-specific insights regarding poliovirus transmission following an accidental point importation or mass vaccination event. We also show that assuming homogeneous contact rates (mass action), as is common of poliovirus forecast models, does not accurately represent the clinical trial and risks overestimating forecasted poliovirus outbreak probability. Our study identifies household and community structure as an important source of transmission heterogeneity when assessing OPV-related transmission risk and provides a calibratable framework for expanding these analyses to other populations. Trial Registration: ClinicalTrials.gov This trial is registered with clinicaltrials.gov, NCT02477046.


Assuntos
Vacinação em Massa/estatística & dados numéricos , Modelos Estatísticos , Poliomielite , Vacina Antipólio Oral , Poliovirus , Bangladesh , Humanos , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Poliomielite/virologia , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Nano Lett ; 21(1): 469-475, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33395311

RESUMO

Molecular biomarkers play a key role in the clinic, aiding in diagnostics and prognostics, and in the research laboratory, contributing to our basic understanding of diseases. Detecting multiple and diverse molecular biomarkers within a single accessible assay would have great utility, providing a more comprehensive picture for clinical evaluation and research, but is a challenge with standard methods. Here, we report programmable DNA nanoswitches for multiplexed detection of up to 6 biomarkers at once with each combination of biomarkers producing a unique barcode signature among 64 possibilities. As a defining feature of our method, we show "mixed multiplexing" for simultaneous barcoded detection of different types of biomolecules, for example, DNA, RNA, antibody, and protein in a single assay. To demonstrate clinical potential, we show multiplexed detection of a prostate cancer biomarker panel in serum that includes two microRNA sequences and prostate specific antigen.


Assuntos
DNA , MicroRNAs , Biomarcadores Tumorais/genética , DNA/genética , MicroRNAs/genética
8.
Proc Natl Acad Sci U S A ; 115(50): 12799-12804, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30420498

RESUMO

Drug resistance is an obstacle to global malaria control, as evidenced by the recent emergence and rapid spread of delayed artemisinin (ART) clearance by mutant forms of the PfKelch13 protein in Southeast Asia. Identifying genetic determinants of ART resistance in African-derived parasites is important for surveillance and for understanding the mechanism of resistance. In this study, we carried out long-term in vitro selection of two recently isolated West African parasites (from Pikine and Thiès, Senegal) with increasing concentrations of dihydroartemisinin (DHA), the biologically active form of ART, over a 4-y period. We isolated two parasite clones, one from each original isolate, that exhibited enhanced survival to DHA in the ring-stage survival assay. Whole-genome sequence analysis identified 10 mutations in seven different genes. We chose to focus on the gene encoding PfCoronin, a member of the WD40-propeller domain protein family, because mutations in this gene occurred in both independent selections, and the protein shares the ß-propeller motif with PfKelch13 protein. For functional validation, when pfcoronin mutations were introduced into the parental parasites by CRISPR/Cas9-mediated gene editing, these mutations were sufficient to reduce ART susceptibility in the parental lines. The discovery of a second gene for ART resistance may yield insights into the molecular mechanisms of resistance. It also suggests that pfcoronin mutants could emerge as a nonkelch13 type of resistance to ART in natural settings.


Assuntos
4-Butirolactona/análogos & derivados , Artemisininas/farmacologia , Proteínas dos Microfilamentos/genética , Mutação/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , 4-Butirolactona/genética , Antimaláricos/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Resistência a Medicamentos/genética , Edição de Genes/métodos , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Repetições WD40/genética
9.
J Biol Chem ; 294(52): 20024-20038, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31748415

RESUMO

Impaired wound healing in elderly individuals increases infection risk and prolongs surgical recovery, but current treatment options are limited. Low doses of interleukin-15 (IL-15) that mimic exercise responses in the circulation improve skin structure and increase mitochondria in uninjured aged skin, suggesting that IL-15 is an essential mitochondrial signal for healing that is lost during aging. Here we used gene microarray analysis of old and young murine epidermal stem cells and demonstrate that aging results in a gene signature characteristic of bioenergetic dysfunction. Intravenous IL-15 treatment rescued chronological aging-induced healing defects and restored youthful wound closure in old, sedentary mice. Additionally, exercise-mediated improvements in the healing of aged skin depend upon circulating IL-15. We show that IL-15 induces signal transducer and activator of transcription 3 (STAT3) signaling characteristic of young animals, reduces markers of growth arrest, and increases keratinocyte and fibroblast growth. Moreover, exercise or exercise-mimicking IL-15 treatment rescued the age-associated decrease in epidermal mitochondrial complex IV activity. Overall, these results indicate that IL-15 or its analogs represent promising therapies for treating impaired wound healing in elderly patients.


Assuntos
Envelhecimento , Interleucina-15/farmacologia , Condicionamento Físico Animal , Cicatrização/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Derme/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Interleucina-15/sangue , Interleucina-15/genética , Interleucina-15/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT3/metabolismo , Comportamento Sedentário , Transdução de Sinais , Pele/patologia
10.
Proc Natl Acad Sci U S A ; 114(39): 10367-10372, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893984

RESUMO

Protein detection and quantification play critical roles in both basic research and clinical practice. Current detection platforms range from the widely used ELISA to more sophisticated, and more expensive, approaches such as digital ELISA. Despite advances, there remains a need for a method that combines the simplicity and cost-effectiveness of ELISA with the sensitivity and speed of modern approaches in a format suitable for both laboratory and rapid, point-of-care applications. Building on recent developments in DNA structural nanotechnology, we introduce the nanoswitch-linked immunosorbent assay (NLISA), a detection platform based on easily constructed DNA nanodevices that change conformation upon binding to a target protein with the results read out by gel electrophoresis. NLISA is surface-free and includes a kinetic-proofreading step for purification, enabling both enhanced sensitivity and reduced cross-reactivity. We demonstrate femtomolar-level detection of prostate-specific antigen in biological fluids, as well as reduced cross-reactivity between different serotypes of dengue and also between a single-mutation and wild-type protein. NLISA is less expensive, uses less sample volume, is more rapid, and, with no washes, includes fewer hands-on steps than ELISA, while also achieving superior sensitivity. Our approach also has the potential to enable rapid point-of-care assays, as we demonstrate by performing NLISA with an iPad/iPhone camera for imaging.


Assuntos
Técnicas de Imunoadsorção , Nanotecnologia/métodos , Antígeno Prostático Específico/análise , Proteínas Proto-Oncogênicas B-raf/análise , Estreptavidina/análise , Proteínas não Estruturais Virais/análise , Bioensaio/métodos , DNA/química , Vírus da Dengue/química , Vírus da Dengue/genética , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
11.
PLoS Comput Biol ; 14(1): e1005923, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315306

RESUMO

Unlike in most pathogens, multiple-strain (polygenomic) infections of P. falciparum are frequently composed of genetic siblings. These genetic siblings are the result of sexual reproduction and can coinfect the same host when cotransmitted by the same mosquito. The degree with which coinfecting strains are related varies among infections and populations. Because sexual recombination occurs within the mosquito, the relatedness of cotransmitted strains could depend on transmission dynamics, but little is actually known of the factors that influence the relatedness of cotransmitted strains. Part of the uncertainty stems from an incomplete understanding of how within-host and within-vector dynamics affect cotransmission. Cotransmission is difficult to examine experimentally but can be explored using a computational model. We developed a malaria transmission model that simulates sexual reproduction in order to understand what determines the relatedness of cotransmitted strains. This study highlights how the relatedness of cotransmitted strains depends on both within-host and within-vector dynamics including the complexity of infection. We also used our transmission model to analyze the genetic relatedness of polygenomic infections following a series of multiple transmission events and examined the effects of superinfection. Understanding the factors that influence the relatedness of cotransmitted strains could lead to a better understanding of the population-genetic correlates of transmission and therefore be important for public health.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Malária Falciparum/parasitologia , Meiose , Plasmodium falciparum/genética , Recombinação Genética , Alelos , Animais , Simulação por Computador , Feminino , Hepatócitos/citologia , Humanos , Masculino , Modelos Genéticos , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Oocistos , Linhagem , Polimorfismo de Nucleotídeo Único , Probabilidade
12.
Biophys J ; 115(12): 2279-2285, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30447991

RESUMO

Life operates at the intersection of chemistry and mechanics. Over the years, we have made remarkable progress in understanding life from a biochemical perspective and the mechanics of life at the single-molecule scale. Yet the full integration of physical and mechanical models into mainstream biology has been impeded by technical and conceptual barriers, including limitations in our ability to 1) easily measure and apply mechanical forces to biological systems, 2) scale these measurements from single-molecule characterization to more complex biomolecular systems, and 3) model and interpret biophysical data in a coherent way across length scales that span single molecules to cells to multicellular organisms. In this manuscript, through a look at historical and recent developments in force spectroscopy techniques and a discussion of a few exemplary open problems in cellular biomechanics, we aim to identify research opportunities that will help us reach our goal of a more complete and integrated understanding of the role of force and mechanics in biological systems.


Assuntos
Fenômenos Mecânicos , Análise Espectral/métodos , Animais , Fenômenos Biomecânicos , Humanos , Espaço Intracelular/metabolismo
13.
Nat Methods ; 12(2): 123-126, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486062

RESUMO

We introduce a nanoscale experimental platform that enables kinetic and equilibrium measurements of a wide range of molecular interactions using a gel electrophoresis readout. Programmable, self-assembled DNA nanoswitches serve both as templates for positioning molecules and as sensitive, quantitative reporters of molecular association and dissociation. We demonstrated this low-cost, versatile, 'lab-on-a-molecule' system by characterizing ten different interactions, including a complex four-body interaction with five discernible states.


Assuntos
DNA Circular/química , DNA de Cadeia Simples/química , Eletroforese em Gel de Poliacrilamida , Microfluídica , Nanotecnologia , Proteínas/química , Biotina/química , DNA Circular/metabolismo , DNA de Cadeia Simples/metabolismo , Cinética , Ligantes , Microfluídica/instrumentação , Microfluídica/métodos , Modelos Biológicos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Ligação Proteica , Proteínas/metabolismo , Estreptavidina/química
14.
Malar J ; 17(1): 196, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764422

RESUMO

BACKGROUND: A number of recent malaria studies have used identity by descent (IBD) to study epidemiological processes relevant to malaria control. In this paper, a software package, hmmIBD, is introduced for estimating pairwise IBD between haploid genomes, such as those of the malaria parasite, sampled from one or two populations. Source code is freely available. METHODS: The performance of hmmIBD was verified using simulated data and benchmarked against an existing method for detecting IBD within populations. Code for all tests is freely available. The utility of hmmIBD for detecting IBD across populations was demonstrated using Plasmodium falciparum data from Cambodia and Ghana. RESULTS: Alongside an existing method, hmmIBD was highly accurate, sensitive and specific. It is fast, requiring only 70 s on average to analyse 50 whole genome sequences on a laptop computer, and scales linearly in the number of pairwise comparisons. Treatment of different populations under hmmIBD improves detection of IBD across populations. CONCLUSION: Fast and accurate software for detecting IBD in malaria parasite genetic data sampled from one or two populations is presented. The latter will likely be a useful feature for malaria elimination efforts, since it could facilitate identification of imported malaria cases. Software is robust to possible misspecification of the genotyping error and the recombination rate. However, exclusion of data in regions whose rates vary greatly from their genome-wide average is recommended.


Assuntos
Genótipo , Haploidia , Parasitologia/instrumentação , Plasmodium falciparum/genética , Camboja , Gana , Software
15.
Proc Natl Acad Sci U S A ; 112(22): 7067-72, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25941365

RESUMO

To study the effects of malaria-control interventions on parasite population genomics, we examined a set of 1,007 samples of the malaria parasite Plasmodium falciparum collected in Thiès, Senegal between 2006 and 2013. The parasite samples were genotyped using a molecular barcode of 24 SNPs. About 35% of the samples grouped into subsets with identical barcodes, varying in size by year and sometimes persisting across years. The barcodes also formed networks of related groups. Analysis of 164 completely sequenced parasites revealed extensive sharing of genomic regions. In at least two cases we found first-generation recombinant offspring of parents whose genomes are similar or identical to genomes also present in the sample. An epidemiological model that tracks parasite genotypes can reproduce the observed pattern of barcode subsets. Quantification of likelihoods in the model strongly suggests a reduction of transmission from 2006-2010 with a significant rebound in 2012-2013. The reduced transmission and rebound were confirmed directly by incidence data from Thiès. These findings imply that intensive intervention to control malaria results in rapid and dramatic changes in parasite population genomics. The results also suggest that genomics combined with epidemiological modeling may afford prompt, continuous, and cost-effective tracking of progress toward malaria elimination.


Assuntos
Monitoramento Epidemiológico , Variação Genética , Genética Populacional/métodos , Malária/epidemiologia , Malária/parasitologia , Plasmodium falciparum/genética , Genótipo , Humanos , Malária/transmissão , Modelos Genéticos , Senegal/epidemiologia
17.
Malar J ; 16(1): 195, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28494763

RESUMO

BACKGROUND: Artemisinin resistance is associated with delayed parasite clearance half-life in vivo and correlates with ring-stage survival under dihydroartemisinin in vitro. Both phenotypes are associated with mutations in the PF3D7_1343700 pfkelch13 gene. Recent spread of artemisinin resistance and emerging piperaquine resistance in Southeast Asia show that artemisinin combination therapy, such as dihydroartemisinin-piperaquine, are losing clinical effectiveness, prompting investigation of drug resistance mechanisms and development of strategies to surmount emerging anti-malarial resistance. METHODS: Sixty-eight parasites isolates with in vivo clearance data were obtained from two Tracking Resistance to Artemisinin Collaboration study sites in Cambodia, culture-adapted, and genotyped for pfkelch13 and other mutations including pfmdr1 copy number; and the RSA0-3h survival rates and response to antimalarial drugs in vitro were measured for 36 of these isolates. RESULTS: Among these 36 parasites one isolate demonstrated increased ring-stage survival for a PfKelch13 mutation (D584V, RSA0-3h = 8%), previously associated with slow clearance but not yet tested in vitro. Several parasites exhibited increased ring-stage survival, yet lack pfkelch13 mutations, and one isolate showed evidence for piperaquine resistance. CONCLUSIONS: This study of 68 culture-adapted Plasmodium falciparum clinical isolates from Cambodia with known clearance values, associated the D584V PfKelch13 mutation with increased ring-stage survival and identified parasites that lack pfkelch13 mutations yet exhibit increased ring-stage survival. These data suggest mutations other than those found in pfkelch13 may be involved in conferring artemisinin resistance in P. falciparum. Piperaquine resistance was also detected among the same Cambodian samples, consistent with reports of emerging piperaquine resistance in the field. These culture-adapted parasites permit further investigation of mechanisms of both artemisinin and piperaquine resistance and development of strategies to prevent or overcome anti-malarial resistance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Camboja , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(41): 14870-5, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267636

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disease characterized by profound intellectual disability, dementia, and a lifespan of about two decades. The cause is mutation in the gene encoding α-N-acetylglucosaminidase (NAGLU), deficiency of NAGLU, and accumulation of heparan sulfate. Impediments to enzyme replacement therapy are the absence of mannose 6-phosphate on recombinant human NAGLU and the blood-brain barrier. To overcome the first impediment, a fusion protein of recombinant NAGLU and a fragment of insulin-like growth factor II (IGFII) was prepared for endocytosis by the mannose 6-phosphate/IGFII receptor. To bypass the blood-brain barrier, the fusion protein ("enzyme") in artificial cerebrospinal fluid ("vehicle") was administered intracerebroventricularly to the brain of adult MPS IIIB mice, four times over 2 wk. The brains were analyzed 1-28 d later and compared with brains of MPS IIIB mice that received vehicle alone or control (heterozygous) mice that received vehicle. There was marked uptake of the administered enzyme in many parts of the brain, where it persisted with a half-life of approximately 10 d. Heparan sulfate, and especially disease-specific heparan sulfate, was reduced to control level. A number of secondary accumulations in neurons [ß-hexosaminidase, LAMP1(lysosome-associated membrane protein 1), SCMAS (subunit c of mitochondrial ATP synthase), glypican 5, ß-amyloid, P-tau] were reduced almost to control level. CD68, a microglial protein, was reduced halfway. A large amount of enzyme also appeared in liver cells, where it reduced heparan sulfate and ß-hexosaminidase accumulation to control levels. These results suggest the feasibility of enzyme replacement therapy for MPS IIIB.


Assuntos
Acetilglucosaminidase/uso terapêutico , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Fator de Crescimento Insulin-Like II/uso terapêutico , Mucopolissacaridose III/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Endocitose , Fibroblastos/metabolismo , Fibroblastos/patologia , Heparitina Sulfato/metabolismo , Humanos , Injeções Intraventriculares , Fígado/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mucopolissacaridose III/patologia , Neurônios/metabolismo , Neurônios/patologia , Ligação Proteica , beta-N-Acetil-Hexosaminidases/metabolismo
19.
J Infect Dis ; 211(7): 1087-96, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25336725

RESUMO

Identifying the source of resurgent parasites is paramount to a strategic, successful intervention for malaria elimination. Although the malaria incidence in Panama is low, a recent outbreak resulted in a 6-fold increase in reported cases. We hypothesized that parasites sampled from this epidemic might be related and exhibit a clonal population structure. We tested the genetic relatedness of parasites, using informative single-nucleotide polymorphisms and drug resistance loci. We found that parasites were clustered into 3 clonal subpopulations and were related to parasites from Colombia. Two clusters of Panamanian parasites shared identical drug resistance haplotypes, and all clusters shared a chloroquine-resistance genotype matching the pfcrt haplotype of Colombian origin. Our findings suggest these resurgent parasite populations are highly clonal and that the high clonality likely resulted from epidemic expansion of imported or vestigial cases. Malaria outbreak investigations that use genetic tools can illuminate potential sources of epidemic malaria and guide strategies to prevent further resurgence in areas where malaria has been eliminated.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Surtos de Doenças , Resistência a Medicamentos/genética , Malária Falciparum/epidemiologia , Plasmodium falciparum/isolamento & purificação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Análise por Conglomerados , Colômbia , Código de Barras de DNA Taxonômico , Feminino , Loci Gênicos/genética , Haplótipos , Humanos , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Panamá/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Adulto Jovem
20.
Methods ; 67(2): 134-41, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24568941

RESUMO

Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Nanoconjugados/química , Oligonucleotídeos/síntese química , Peptídeos/síntese química , Sequência de Aminoácidos , Biocatálise , Química Click , Dados de Sequência Molecular , Nanoestruturas/química , Oligonucleotídeos/isolamento & purificação , Peptídeos/isolamento & purificação , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA