RESUMO
The aim of current work was to present a novel evaluation procedure implemented for checking the constancy of beam path accuracy of a CyberKnife system based on ArcCHECK. A tailor-made Styrofoam with four implanted fiducial markers was adopted to enable the fiducial tracking during beam deliveries. A simple two-field plan and an isocentric plan were created for determining the density override of ArcCHECK in MultiPlan and the constancy of beam path accuracy respectively. Correlation curves for all diodes involved in the study were obtained by analyzing the dose distributions calculated by MultiPlan after introducing position shifts in anteroposterior, superoinferior, and left-right directions. The ability of detecting systematic position error was also evaluated by changing the position of alignment center intentionally. The one standard deviation (SD) result for reproducibility test showed the RMS of 0.054 mm and the maximum of 0.263 mm, which was comparable to the machine self-test result. The mean of absolute value of position errors in the constancy test was measured to 0.091 mm with a SD of 0.035 mm, while the root-mean-square was 0.127 mm with a SD of 0.034 mm. All introduced systematic position errors range from 0.3 to 2 mm were detected successfully. Efficient method for evaluating the constancy of beam path accuracy of CyberKnife has been developed and proven to be sensitive enough for detecting a systematic drift of robotic manipulator. Once the workflow is streamlined, our proposed method will be an effective and easy quality assurance procedure for medical physicists.
Assuntos
Marcadores Fiduciais , Neoplasias/cirurgia , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Modelos Estatísticos , Controle de Qualidade , Radiocirurgia/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos TestesRESUMO
To evaluate the accuracy in detection of small and low-contrast regions using a high-definition diagnostic computed tomography (CT) scanner compared with a radiotherapy CT simulation scanner. A custom-made phantom with cylindrical holes of diameters ranging from 2-9 mm was filled with 9 different concentrations of contrast solution. The phantom was scanned using a 16-slice multidetector CT simulation scanner (LightSpeed RT16, General Electric Healthcare, Milwaukee, WI) and a 64-slice high-definition diagnostic CT scanner (Discovery CT750 HD, General Electric Healthcare). The low-contrast regions of interest (ROIs) were delineated automatically upon their full width at half maximum of the CT number profile in Hounsfield units on a treatment planning workstation. Two conformal indexes, CI(in), and CI(out), were calculated to represent the percentage errors of underestimation and overestimation in the automated contours compared with their actual sizes. Summarizing the conformal indexes of different sizes and contrast concentration, the means of CI(in) and CI(out) for the CT simulation scanner were 33.7% and 60.9%, respectively, and 10.5% and 41.5% were found for the diagnostic CT scanner. The mean differences between the 2 scanners' CI(in) and CI(out) were shown to be significant with p < 0.001. A descending trend of the index values was observed as the ROI size increases for both scanners, which indicates an improved accuracy when the ROI size increases, whereas no observable trend was found in the contouring accuracy with respect to the contrast levels in this study. Images acquired by the diagnostic CT scanner allow higher accuracy on size estimation compared with the CT simulation scanner in this study. We recommend using a diagnostic CT scanner to scan patients with small lesions (<1 cm in diameter) for radiotherapy treatment planning, especially for those pending for stereotactic radiosurgery in which accurate delineation of small-sized, low-contrast regions is important for dose calculation.
Assuntos
Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/instrumentação , Radioterapia Conformacional/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Tomotherapy adaptive dose calculation offers the ability to verify and adjust the therapeutic plan during the treatment. Using tomotherapy adaptive dose calculation, the planned fluence pattern can be used to recalculate the dose distribution on pretreatment megavoltage computed tomography (MVCT) images. Zipper artifacts, which appear as increased density in the central region of MVCT images, may affect the accuracy of adaptive dose recalculation. The purpose of this study was to evaluate the dosimetric effects of zipper artifacts on tomotherapy adaptive dose calculation. MVCT images of a cylindrical water phantom of 22-cm diameter were acquired on a tomotherapy system. The zipper artifacts were enclosed by a cylindrical planning target volume (PTV) contoured on these images. For comparison, artifact-free images were created by replacing the computed tomography (CT) numbers of zipper artifacts with the mean CT number of water. Treatment plans were generated by giving a uniform dose of 2 Gy to the PTV based on these modified images; it was then applied to the images that have the zipper artifacts. The impacts of different pitch ratios on the artifacts were assessed. The dose distribution differences between the 2 sets of images were compared. The absorbed dose that covered 95% volume of PTV and maximum dose, minimum dose, and mean dose of the PTV were also calculated and compared. The water phantom was scanned on the tomotherapy system twice per week for 12 consecutive weeks. The mean CT number of zipper artifacts (101 HU) was three times higher than that of water (34 HU). The CT number value and location of zipper artifacts were not affected by the pitch ratio. Gamma analysis was performed between the original and recalculated dose distributions. The discrepancies between the isodose distributions calculated by two sets of images were within 1%/1-mm tolerance. The dosimetric impact from zipper artifacts was found insignificant such that the recalculated dose was underestimated by less than 0.5%.