Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(17): e2121816119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439057

RESUMO

The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin­LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.


Assuntos
Fibroblastos , Lâmina Nuclear , Animais , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Camundongos , Lâmina Nuclear/metabolismo , Matriz Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Annu Rev Genomics Hum Genet ; 21: 263-288, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32428417

RESUMO

In recent years, our perspective on the cell nucleus has evolved from the view that it is a passive but permeable storage organelle housing the cell's genetic material to an understanding that it is in fact a highly organized, integrative, and dynamic regulatory hub. In particular, the subcompartment at the nuclear periphery, comprising the nuclear envelope and the underlying lamina, is now known to be a critical nexus in the regulation of chromatin organization, transcriptional output, biochemical and mechanosignaling pathways, and, more recently, cytoskeletal organization. We review the various functional roles of the nuclear periphery and their deregulation in diseases of the nuclear envelope, specifically the laminopathies, which, despite their rarity, provide insights into contemporary health-care issues.


Assuntos
Núcleo Celular/genética , Cromatina/química , Cromatina/genética , Laminopatias/patologia , Animais , Humanos , Laminopatias/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-34400553

RESUMO

Lamins interact with a host of nuclear membrane proteins, transcription factors, chromatin regulators, signaling molecules, splicing factors, and even chromatin itself to form a nuclear subcompartment, the nuclear lamina, that is involved in a variety of cellular processes such as the governance of nuclear integrity, nuclear positioning, mitosis, DNA repair, DNA replication, splicing, signaling, mechanotransduction and -sensation, transcriptional regulation, and genome organization. Lamins are the primary scaffold for this nuclear subcompartment, but interactions with lamin-associated peptides in the inner nuclear membrane are self-reinforcing and mutually required. Lamins also interact, directly and indirectly, with peripheral heterochromatin domains called lamina-associated domains (LADs) and help to regulate dynamic 3D genome organization and expression of developmentally regulated genes.


Assuntos
Mecanotransdução Celular , Lâmina Nuclear , Núcleo Celular/metabolismo , Cromatina/metabolismo , Laminas/genética , Laminas/metabolismo , Membrana Nuclear/metabolismo , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo
4.
Curr Opin Genet Dev ; 67: 130-141, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524904

RESUMO

The regulation of genomic function is in part mediated through the physical organization and architecture of the nucleus. Disruption to nuclear organization and architecture is increasingly being recognized by its contribution to many diseases. The LINC complexes - protein structures traversing the nuclear envelope, that physically connect the nuclear interior, and hence the genome, to cytoplasmic cytoskeletal networks are an important component in the physical organization of the genome and its function. This connection, potentially allows for the constant detection of environmental mechanical stimuli, resulting in altered regulation of nuclear architecture and genome function, either directly or via the process of mechanotransduction. Here, we review the influences LINC complexes exert on genome functions and their impact on cellular/organismal health.


Assuntos
Genoma/genética , Mecanotransdução Celular/genética , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Citoplasma/genética , Citoplasma/ultraestrutura , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Humanos , Membrana Nuclear/genética , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/ultraestrutura , RNA Longo não Codificante/ultraestrutura
5.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33758005

RESUMO

The nuclear lamina is a proteinaceous network of filaments that provide both structural and gene regulatory functions by tethering proteins and large domains of DNA, the so-called lamina-associated domains (LADs), to the periphery of the nucleus. LADs are a large fraction of the mammalian genome that are repressed, in part, by their association to the nuclear periphery. The genesis and maintenance of LADs is poorly understood as are the proteins that participate in these functions. In an effort to identify proteins that reside at the nuclear periphery and potentially interact with LADs, we have taken a two-pronged approach. First, we have undertaken an interactome analysis of the inner nuclear membrane bound LAP2ß to further characterize the nuclear lamina proteome. To accomplish this, we have leveraged the BioID system, which previously has been successfully used to characterize the nuclear lamina proteome. Second, we have established a system to identify proteins that bind to LADs by developing a chromatin-directed BioID system. We combined the BioID system with the m6A-tracer system which binds to LADs in live cells to identify both LAD proximal and nuclear lamina proteins. In combining these datasets, we have further characterized the protein network at the nuclear lamina, identified putative LAD proximal proteins and found several proteins that appear to interface with both micro-proteomes. Importantly, several proteins essential for LAD function, including heterochromatin regulating proteins related to H3K9 methylation, were identified in this study.


Assuntos
Lâmina Nuclear/metabolismo , Proteoma/metabolismo , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Genoma , Heterocromatina/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Células NIH 3T3 , Lâmina Nuclear/genética , Lâmina Nuclear/patologia , Proteínas Nucleares/genética , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Proteoma/genética , Proteômica/métodos
6.
Genome Biol ; 22(1): 305, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775987

RESUMO

BACKGROUND: The dynamic 3D organization of the genome is central to gene regulation and development. The nuclear lamina influences genome organization through the tethering of lamina-associated domains (LADs) to the nuclear periphery. Evidence suggests that lamins A and C are the predominant lamins involved in the peripheral association of LADs, potentially serving different roles. RESULTS: Here, we examine chromosome architecture in mouse cells in which lamin A or lamin C are downregulated. We find that lamin C, and not lamin A, is required for the 3D organization of LADs and overall chromosome organization. Striking differences in localization are present as cells exit mitosis and persist through early G1 and are linked to differential phosphorylation. Whereas lamin A associates with the nascent nuclear envelope (NE) during telophase, lamin C remains in the interior, surrounding globular LAD aggregates enriched on euchromatic regions. Lamin C association with the NE is delayed until several hours into G1 and correlates temporally and spatially with the post-mitotic NE association of LADs. Post-mitotic LAD association with the NE, and global 3D genome organization, is perturbed only in cells depleted of lamin C, and not lamin A. CONCLUSIONS: Lamin C regulates LAD dynamics during exit from mitosis and is a key regulator of genome organization in mammalian cells. This reveals an unexpectedly central role for lamin C in genome organization, including inter-chromosomal LAD-LAD segregation and LAD scaffolding at the NE, raising intriguing questions about the individual and overlapping roles of lamin A/C in cellular function and disease.


Assuntos
Genoma , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mitose , Animais , Núcleo Celular/genética , Cromatina , Cromossomos , Humanos , Lamina Tipo B/genética , Laminas , Camundongos , Membrana Nuclear , Lâmina Nuclear/genética
7.
iScience ; 10: 40-52, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30500481

RESUMO

The modulation of protein-protein interactions (PPIs) is an essential regulatory activity defining diverse cell functions in development and disease. BioID is an unbiased proximity-dependent biotinylation method making use of a biotin-protein ligase fused to a protein of interest and has become an important tool for mapping of PPIs within cellular contexts. We devised an advanced method, 2C-BioID, in which the biotin-protein ligase is kept separate from the protein of interest, until the two are induced to associate by the addition of a dimerizing agent. As proof of principle, we compared the interactomes of lamina-associated polypeptide 2ß (LAP2ß) with those of lamins A and C, using 2C- and conventional BioID. 2C-BioID greatly enhanced data robustness by facilitating the in silico elimination of non-specific interactors as well as overcoming the problems associated with aberrant protein localization. 2C-BioID therefore significantly strengthens the specificity and reliability of BioID-based interactome analysis, by the more stringent exclusion of false-positives and more efficient intracellular targeting.

8.
Cell Rep ; 25(7): 1729-1740.e6, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428344

RESUMO

Tcrb locus V(D)J recombination is regulated by positioning at the nuclear periphery. Here, we used DamID to profile Tcrb locus interactions with the nuclear lamina at high resolution. We identified a lamina-associated domain (LAD) border composed of several CTCF-binding elements that segregates active non-LAD from inactive LAD regions of the locus. Deletion of the LAD border causes an enhancer-dependent spread of histone H3 lysine 27 acetylation from the active recombination center into recombination center-proximal LAD chromatin. This is associated with a disruption to nuclear lamina association, increased chromatin looping to the recombination center, and increased transcription and recombination of recombination center-proximal gene segments. Our results show that a LAD and LAD border are critical components of Tcrb locus gene regulation and suggest that LAD borders may generally function to constrain the activity of nearby enhancers.


Assuntos
Loci Gênicos , Lâmina Nuclear/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação Genética/genética , Transcrição Gênica , Animais , Linhagem Celular , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ativação Transcricional/genética , Recombinação V(D)J/genética
9.
Dev Cell ; 35(6): 670-1, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26702826

RESUMO

Chromatin domains associated with the nuclear lamina are generally heterochromatic and transcriptionally repressed. How they are recruited to and maintained at the nuclear periphery remains unclear. A recent study by Gonzalez-Sandoval et al. (2015) in Cell identifies a chromatin-binding protein that links repressive chromatin with the inner nuclear membrane.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/metabolismo , Embrião não Mamífero/citologia , Heterocromatina , Código das Histonas , Animais
10.
J Cell Biol ; 208(1): 33-52, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25559185

RESUMO

Nuclear organization has been implicated in regulating gene activity. Recently, large developmentally regulated regions of the genome dynamically associated with the nuclear lamina have been identified. However, little is known about how these lamina-associated domains (LADs) are directed to the nuclear lamina. We use our tagged chromosomal insertion site system to identify small sequences from borders of fibroblast-specific variable LADs that are sufficient to target these ectopic sites to the nuclear periphery. We identify YY1 (Ying-Yang1) binding sites as enriched in relocating sequences. Knockdown of YY1 or lamin A/C, but not lamin A, led to a loss of lamina association. In addition, targeted recruitment of YY1 proteins facilitated ectopic LAD formation dependent on histone H3 lysine 27 trimethylation and histone H3 lysine di- and trimethylation. Our results also reveal that endogenous loci appear to be dependent on lamin A/C, YY1, H3K27me3, and H3K9me2/3 for maintenance of lamina-proximal positioning.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/metabolismo , Lâmina Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Cromatina/química , Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Lamina Tipo A/genética , Lisina , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Células NIH 3T3 , Conformação de Ácido Nucleico , Conformação Proteica , Interferência de RNA , Fatores de Tempo , Transfecção , Fator de Transcrição YY1/metabolismo
11.
Curr Opin Genet Dev ; 25: 50-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24556270

RESUMO

The nuclear periphery has been implicated in gene regulation and it has been proposed that proximity to the nuclear lamina and inner nuclear membrane (INM) leads to gene repression. More recently, it appears that there is a correlation and interdependence between lamina associated domains (LADs), the epigenome and overall three-dimensional architecture of the genome. However, the mechanisms of such organization at the 'peripheral zone' and the functional significance of these associations are poorly understood. The role these domains play in development and disease is an active and exciting area of research, expanding our knowledge of how the three-dimensional (3D) genome is regulated.


Assuntos
Genoma , Lâmina Nuclear/genética , Animais , Epigênese Genética , Humanos , Lâmina Nuclear/química , Conformação de Ácido Nucleico
12.
Curr Opin Cell Biol ; 28: 105-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24886773

RESUMO

In recent years, our view of the nucleus has changed considerably with an increased awareness of the roles dynamic higher order chromatin structure and nuclear organization play in nuclear function. More recently, proteomics approaches have identified differential expression of nuclear lamina and nuclear envelope transmembrane (NET) proteins. Many NETs have been implicated in a range of developmental disorders as well as cell-type specific biological processes, including genome organization and nuclear morphology. While further studies are needed, it is clear that the differential nuclear envelope proteome contributes to cell-type specific nuclear identity and functions. This review discusses the importance of proteome diversity at the nuclear periphery and highlights the putative roles of NET proteins, with a focus on nuclear architecture.


Assuntos
Genoma , Membrana Nuclear/genética , Proteoma/metabolismo , Animais , Cromossomos/química , Cromossomos/genética , Cromossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Proteoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA