Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2024): 20240435, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835280

RESUMO

Extensive research has investigated the relationship between the social environment and cognition, suggesting that social complexity may drive cognitive evolution and development. However, evidence for this relationship remains equivocal. Group size is often used as a measure of social complexity, but this may not capture intraspecific variation in social interactions. Social network analysis can provide insight into the cognitively demanding challenges associated with group living at the individual level. Here, we use social networks to investigate whether the cognitive performance of wild Western Australian magpies (Gymnorhina tibicen dorsalis) is related to group size and individual social connectedness. We quantified social connectedness using four interaction types: proximity, affiliative, agonistic and vocal. Consistent with previous research on this species, individuals in larger groups performed better on an associative learning task. However, social network position was also related to cognitive performance. Individuals receiving aggressive interactions performed better, while those involved in aggressive interactions with more group members performed worse. Overall, this suggests that cognitive performance is related to specific types of social interaction. The findings from this study highlight the value of considering fine-grained metrics of sociality that capture the challenges associated with social life when testing the relationship between the social environment and cognition.


Assuntos
Agressão , Cognição , Comportamento Social , Animais , Austrália Ocidental , Masculino , Passeriformes/fisiologia , Feminino
2.
Anim Cogn ; 27(1): 52, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060612

RESUMO

Despite considerable research into the structure of cognition in non-human animal species, there is still much debate as to whether animal cognition is organised as a series of discrete domains or an overarching general cognitive factor. In humans, the existence of general intelligence is widely accepted, but less work has been undertaken in animal psychometrics to address this question. The relatively few studies on non-primate animal species that do investigate the structure of cognition rarely include tasks assessing social cognition and focus instead on physical cognitive tasks. In this study, we tested 36 wild Western Australian magpies (Gymnorhina tibicen dorsalis) on a battery of three physical (associative learning, spatial memory, and numerical assessment) and one social (observational spatial memory) cognitive task, to investigate if cognition in this species fits a general cognitive factor model, or instead one of separate physical and social cognitive domains. A principal component analysis (PCA) identified two principal components with eigenvalues exceeding 1; a first component onto which all three physical tasks loaded strongly and positively, and a second component onto which only the social task (observational spatial memory) loaded strongly and positively. These findings provide tentative evidence for separate physical and social cognitive domains in this species, and highlight the importance of including tasks assessing both social and physical cognition in cognitive test batteries.


Assuntos
Cognição , Passeriformes , Animais , Masculino , Feminino , Passeriformes/fisiologia , Memória Espacial , Cognição Social
3.
Glob Chang Biol ; 29(24): 6912-6930, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846601

RESUMO

Anthropogenic noise is a pollutant of growing concern, with wide-ranging effects on taxa across ecosystems. Until recently, studies investigating the effects of anthropogenic noise on animals focused primarily on population-level consequences, rather than individual-level impacts. Individual variation in response to anthropogenic noise may result from extrinsic or intrinsic factors. One such intrinsic factor, cognitive performance, varies between individuals and is hypothesised to aid behavioural response to novel stressors. Here, we combine cognitive testing, behavioural focals and playback experiments to investigate how anthropogenic noise affects the behaviour and anti-predator response of Western Australian magpies (Gymnorhina tibicen dorsalis), and to determine whether this response is linked to cognitive performance. We found a significant population-level effect of anthropogenic noise on the foraging effort, foraging efficiency, vigilance, vocalisation rate and anti-predator response of magpies, with birds decreasing their foraging, vocalisation behaviours and anti-predator response, and increasing vigilance when loud anthropogenic noise was present. We also found that individuals varied in their response to playbacks depending on their cognitive performance, with individuals that performed better in an associative learning task maintaining their anti-predator response when an alarm call was played in anthropogenic noise. Our results add to the growing body of literature documenting the adverse effects of anthropogenic noise on wildlife and provide the first evidence for an association between individual cognitive performance and behavioural responses to anthropogenic noise.


Assuntos
Ecossistema , Passeriformes , Humanos , Animais , Austrália , Ruído/efeitos adversos , Animais Selvagens , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA