Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anat ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978276

RESUMO

The Upper Jurassic Morrison Formation sauropods Diplodocus (formerly "Seismosaurus") hallorum and Supersaurus vivianae are quantifiably the largest dinosaurian taxa from the formation, as well as being among the largest dinosaurs in the world. Their extreme body size (in particular body length, c. 50+ m) has fascinated the paleontological community since their discoveries and has sparked an ongoing discussion on the trends and limits of Morrison Formation sauropod body size. Although not an undeviating proxy, often the largest and skeletally most mature specimens are among the rarest (as exemplified in Triceratops). While their body size has no phylogenetic bearing, the extreme size and potential eco and biological significance of these two sauropod taxa are frequently discussed. Whether these rare and titanically proportioned sauropod specimens are large-bodied, senescent or both is an often-repeating rhetoric. To definitively make maturational inferences about these taxa, we osteohistologically sampled the holotype of D. hallorum (NMMNH P-25079) and the second known specimen of S. vivianae (WDC DMJ-021). Our age-determinant and maturational assessments indicate that both specimens were skeletally mature at their respective age of death. Retrocalculation methods for D. hallorum NMMNH P-25079 produce a maximum age-at-death estimation of 60 years, whereas S. vivianae WDC DMJ-021 lived well past skeletal maturity-so much so that reliable retrocalculated ages cannot be accurately determined at this time. Additionally, the rarity of such large sauropods within the Morrison Formation might be more parsimoniously explained as relating to their maturity as opposed to representing aberrant taxa on the Morrison landscape.

2.
Anat Rec (Hoboken) ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965778

RESUMO

Headbutting is a combative behavior most popularly portrayed and exemplified in the extant bighorn sheep (Ovis canadensis). When behaviorally proposed in extinct taxa, these organisms are oft depicted Ovis-like as having used modified cranial structures to combatively slam into one another. The combative behavioral hypothesis of headbutting has a long and rich history in the vertebrate fossil literature (not just within Dinosauria), but the core of this behavioral hypothesis in fossil terrestrial vertebrates is associated with an enlarged osseous cranial dome-an osteological structure with essentially no current counterpart. One confounding issue found in the literature is that while the term "headbutting" sounds simplistic enough, little terminology has been used to describe this hypothesized behavior. And pertinent to this special issue, potential brain trauma and the merits of such proposed pugilism have been assessed largely from the potential deformation of the overlying osseous structure; despite the fact that extant taxa readily show that brain damage can and does occur without osteological compromise. Additionally, the extant taxa serving as the behavioral counterpart for comparison are critical, not only because of the combative behaviors and morphologies they display, but also the way they engage in such behavior. Sheep (Ovis), warthogs (Phacochoerus), and bison (Bison) all engage in various forms of "headbutting", but the cranial morphologies and the way each engages in combat is markedly different. To hypothesize that an extinct organism engaged in headbutting like an extant counterpart in theory implies specific striking:contacting surfaces, speed, velocity, and overall how that action was executed. This review examines the history and usage of the headbutting behavioral hypothesis in these dome-headed fossil taxa, their respective extant behavioral counterparts, and proposes a protocol for specific behavioral terms relating to headbutting to stem future confusion. We also discuss the disparate morphology of combative cranial structures in the fossil record, and the implications of headbutting-induced brain injury in extinct taxa. Finally, we conclude with some potential implications for artistic reconstructions of fossil taxa regarding this behavioral repertoire.

3.
Sci Rep ; 12(1): 1954, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145134

RESUMO

Other than repaired fractures, osteoarthritis, and periosteal reaction, the vertebrate fossil record has limited evidence of non-osseous diseases. This difficulty in paleontological diagnoses stems from (1) the inability to conduct medical testing, (2) soft-tissue pathologic structures are less likely to be preserved, and (3) many osseous lesions are not diagnostically specific. However, here reported for the first time is an avian-style respiratory disorder in a non-avian dinosaur. This sauropod presents irregular bony pathologic structures stemming from the pneumatic features in the cervical vertebrae. As sauropods show well-understood osteological correlates indicating that respiratory tissues were incorporated into the post-cranial skeleton, and thus likely had an 'avian-style' form of respiration, it is most parsimonious to identify these pathologic structures as stemming from a respiratory infection. Although several extant avian infections produce comparable symptoms, the most parsimonious is airsacculitis with associated osteomyelitis. From actinobacterial to fungal in origin, airsacculitis is an extremely prevalent respiratory disorder in birds today. While we cannot pinpoint the specific infectious agent that caused the airsacculitis, this diagnosis establishes the first fossil record of this disease. Additionally, it allows us increased insight into the medical disorders of dinosaurs from a phylogenetic perspective and understanding what maladies plagued the "fearfully great lizards".


Assuntos
Evolução Biológica , Dinossauros/fisiologia , Paleontologia , Infecções Respiratórias/fisiopatologia , Animais , Aves/fisiologia , Fósseis/patologia , Osteologia , Filogenia
4.
Sci Rep ; 8(1): 14341, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310088

RESUMO

Sauropod dinosaurs were the largest terrestrial vertebrates; yet despite a robust global fossil record, the paucity of cranial remains complicates attempts to understand their paleobiology. An assemblage of small diplodocid sauropods from the Upper Jurassic Morrison Formation of Montana, USA, has produced the smallest diplodocid skull yet discovered. The ~24 cm long skull is referred to cf. Diplodocus based on the presence of several cranial and vertebral characters. This specimen enhances known features of early diplodocid ontogeny including a short snout with narrow-crowned teeth limited to the anterior portion of the jaws and more spatulate teeth posteriorly. The combination of size plus basal and derived character expression seen here further emphasizes caution when naming new taxa displaying the same, as these may be indicative of immaturity. This young diplodocid reveals that cranial modifications occurred throughout growth, providing evidence for ontogenetic dietary partitioning and recapitulation of ancestral morphologies.


Assuntos
Ração Animal , Evolução Biológica , Tamanho Corporal , Dinossauros/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , Animais , Dinossauros/classificação , Dinossauros/genética , Paleontologia , Filogenia
5.
PLoS One ; 12(5): e0177423, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562606

RESUMO

A partial skeleton from the Little Snowy Mountains of central Montana is the first referable specimen of the Morrison Formation macronarian sauropod Camarasaurus. This specimen also represents the northernmost occurrence of a sauropod in the Morrison. Histological study indicates that, although the specimen is relatively small statured, it is skeletally mature; this further emphasizes that size is not a undeviating proxy to maturity in dinosaurs, and that morphologies associated with an individual's age and stature may be more nebulous in sauropods.


Assuntos
Dinossauros/classificação , Fósseis , Animais , Montana , Paleontologia , Crânio/anatomia & histologia
6.
PLoS One ; 11(7): e0158962, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27442509

RESUMO

Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.


Assuntos
Adaptação Fisiológica , Tamanho Corporal , Dinossauros/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Animais , Fêmur/anatomia & histologia , Ligamentos Articulares/anatomia & histologia , Funções Verossimilhança , Filogenia
7.
J Morphol ; 275(9): 1053-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24753263

RESUMO

Vertebral neural spine bifurcation has been historically treated as largely restrictive to sauropodomorph dinosaurs; wherein it is inferred to be an adaptation in response to the increasing weight from the horizontally extended cervical column. Because no extant terrestrial vertebrates have massive, horizontally extended necks, extant forms with large cranial masses were examined for the presence of neural spine bifurcation. Here, I report for the first time on the soft tissue surrounding neural spine bifurcation in a terrestrial quadruped through the dissection of three Ankole-Watusi cattle. With horns weighing up to a combined 90 kg, the Ankole-Watusi is unlike any other breed of cattle in terms of cranial weight and presence of neural spine bifurcation. Using the Ankole-Watusi as a model, it appears that neural spine bifurcation plays a critical role in supporting a large mobile weight adjacent to the girdles. In addition to neural spine bifurcation being recognized within nonavian dinosaurs, this vertebral feature is also documented within many members of temnospondyls, captorhinids, seymouriamorphs, diadectomorphs, Aves, marsupials, artiodactyls, perissodactyls, and Primates, amongst others. This phylogenetic distribution indicates that spine bifurcation is more common than previously thought, and that this vertebral adaptation has contributed throughout the evolutionary history of tetrapods. Neural spine bifurcation should now be recognized as an anatomical component adapted by some vertebrates to deal with massive, horizontal, mobile weights adjacent the girdles.


Assuntos
Vértebra Cervical Áxis/anatomia & histologia , Bovinos/anatomia & histologia , Ligamentos/citologia , Animais , Vértebras Cervicais/anatomia & histologia , Condrócitos/citologia , Feminino , Músculo Esquelético/anatomia & histologia , Pescoço/anatomia & histologia , Pescoço/inervação , Filogenia , Crânio/anatomia & histologia , Vértebras Torácicas/anatomia & histologia
8.
J Morphol ; 273(7): 754-64, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22460982

RESUMO

Within Diplodocoidea (Dinosauria: Sauropoda), phylogenetic position of the three subclades Rebbachisauridae, Dicraeosauridae, and Diplodocidae is strongly influenced by a relatively small number of characters. Neural spine bifurcation, especially within the cervical vertebrae, is considered to be a derived character, with taxa that lack this feature regarded as relatively basal. Our analysis of dorsal and cervical vertebrae from small-sized diplodocoids (representing at least 18 individuals) reveals that neural spine bifurcation is less well developed or absent in smaller specimens. New preparation of the roughly 200-cm long diplodocid juvenile Sauriermuseum Aathal 0009 reveals simple nonbifurcated cervical neural spines, strongly reminiscent of more basal sauropods such as Omeisaurus. An identical pattern of ontogenetically linked bifurcation has also been observed in several specimens of the basal macronarian Camarasaurus, suggesting that this is characteristic of several clades of Sauropoda. We suggest that neural spine bifurcation performs a biomechanical function related to horizontal positioning of the neck that may become significant only at the onset of a larger body size, hence, its apparent absence or weaker development in smaller specimens. These results have significant implications for the taxonomy and phylogenetic position of taxa described from specimens of small body size. On the basis of shallow bifurcation of its cervical and dorsal neural spines, the small diplodocid Suuwassea is more parsimoniously interpreted as an immature specimen of an already recognized diplodocid taxon. Our findings emphasize the view that nonmature dinosaurs often exhibit morphologies more similar to their ancestral state and may therefore occupy a more basal position in phylogenetic analyses than would mature specimens of the same species. In light of this, we stress the need for phylogenetic reanalysis of sauropod clades where vital characters may be ontogenetically variable, particularly when data is derived from small individuals.


Assuntos
Vértebras Cervicais/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/classificação , Filogenia , Animais , Fenômenos Biomecânicos , Tamanho Corporal , Caráter , Dinossauros/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA