Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(5): 8030-8041, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439470

RESUMO

A voltage sensor with high resolution and large measurement range based on an optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. The key component in the cavity to select the oscillating signal is a finite impulse response (FIR)-microwave photonic filter (MPF) which consists of a sinusoidal broadband optical signal, an unbalanced Mach-Zehnder interferometer (MZI), a section of dispersion compensating fiber, and a photodetector. The center frequency of the FIR-MPF is mainly determined by the free spectral range (FSR) of the FIR-MPF. In the lower arm of the MZI, a cylindrical piezoelectric ceramic (PZT) wrapped with a section of optical fiber acts as voltage sensing head. Due to the inverse piezoelectric effect of PZT, the variation of the voltage will cause radial deformation of the cylindrical PZT and then lead to the change of the FSR of the MZI, determining the shift of center frequency of FIR-MPF as well as the frequency of the oscillating signal of the OEO. Thus, by monitoring the shift of the oscillation frequency of the OEO using an electric spectrum analyzer or a digital signal processor, a high-speed interrogation and high-resolution voltage measurement can be realized. Additionally, in the proposed scheme, an infinite impulse response (IIR)-MPF consisting of a fiber ring resonator is cascaded with the FIR-MPF to ensure the single-mode oscillation of the OEO. The experimental results show that a total range of 1700 V voltage sensing from - 200 V to 1500 V is accomplished with the voltage sensitivity of 0.25 GHz/100 V and the resolution of 0.3 V. By adjusting the proportion of the length of single mode fiber between two branches of MZI, the impact of temperature can be greatly reduced. The proposed sensor offers advantages such as a large measurement range, high resolution, high-speed interrogation, and stability to temperature disturbances, making it highly suitable for sensing applications in smart grids.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38581324

RESUMO

Background: In colorectal cancer (CRC) , understanding lymph node metastasis (LNM) is critical for effective treatment. Better approaches are required for identifying and assessing the risk contributions of factors influencing lymph node metastasis in colorectal cancer. Objective: This study aims to analyze factors associated with LNM in CRC and develop a risk prediction model. Methods: A retrospective cohort study was conducted and a total of 181 CRC patients admitted between March 2020 and April 2023 were selected as research participants. Among them, 47 patients developed LNM, while the remaining 134 did not. Clinical data, including age, sex, pathological stages, were collected. Logistic regression was employed to identify factors influencing LNM in CRC, forming the basis for constructing a risk model. The diagnostic efficiency of this model was assessed through receiver operating characteristic (ROC) curves. Results: Tumor nodules and histological types showed no correlation with LNM in CRC (P > .05). However, pathological staging, vascular and neural invasion, use of VEGF inhibitors, and preoperative CEA were identified as independent risk factors for LNM in CRC (P < .05). The established model demonstrated a good fit with the observations. ROC curve analysis indicated an area under the curve (AUC) of 0.884 for predicting LNM in CRC, signifying excellent predictive performance. Conclusions: The risk model, formulated on factors associated with LNM in CRC, serves as a efficient tool in assessing the probability of LNM. It provides invaluable insights that can significantly enhance clinical approaches to the diagnosis and treatment of CRC in the future.

3.
Opt Express ; 31(20): 33003-33014, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859089

RESUMO

A simultaneous magnetic field and temperature sensing scheme based on cascaded microwave photonic filters (MPFs) with high resolution is proposed and experimentally demonstrated. A polarization maintaining fiber bonded with a giant magnetostrictive material acts both as a magnetic field sensing probe and an important unit of a dispersion-induced MPF. A 500 m single mode fiber in a two-tap MPF is used to perform temperature compensation. The power fading frequency of the dispersion-induced MPF and the dip frequency of the two-tap MPF are selected to monitor the magnetic field and temperature changes. When temperature changes, both power fading frequency and dip frequency will change. While only power fading frequency shifts as magnetic field changes. Consequently, dual parameter sensing can be achieved by monitoring the characteristic microwave frequencies of the two MPFs. The temperature cross-sensitivity is well resolved in this way. In the experiment, the microwave frequency changes 5.84 MHz as external magnetic field increases by 1 mT. The corresponded theoretical resolution can reach 0.17 nT, which is only limited by the minimum resolution of vector network analyzer.

4.
BMC Bioinformatics ; 23(1): 417, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221066

RESUMO

BACKGROUND: Gliomas are highly complex and heterogeneous tumors, rendering prognosis prediction challenging. The advent of deep learning algorithms and the accessibility of multi-omic data represent a new approach for the identification of survival-sensitive subtypes. Herein, an autoencoder-based approach was used to identify two survival-sensitive subtypes using RNA sequencing (RNA-seq) and DNA methylation (DNAm) data from The Cancer Genome Atlas (TCGA) dataset. The subtypes were used as labels to build a support vector machine model with cross-validation. We validated the robustness of the model on Chinese Glioma Genome Atlas (CGGA) dataset. DNAm-driven genes were identified by integrating DNAm and gene expression profiling analyses using the R MethylMix package and carried out for further enrichment analysis. RESULTS: For TCGA dataset, the model produced a high C-index (0.92 ± 0.02), low brier score (0.16 ± 0.02), and significant log-rank p value (p < 0.0001). The model also had a decent performance for CGGA dataset (CGGA DNAm: C-index of 0.70, brier score of 0.21; CGGA RNA-seq: C-index of 0.79, brier score of 0.18). Moreover, we identified 389 DNAm-driven genes of survival-sensitive subtypes, which were significantly enriched in the glutathione metabolism pathway. CONCLUSIONS: Our study identified two survival-sensitive subtypes of glioma and provided insights into the molecular mechanisms underlying glioma development; thus, potentially providing a new target for the prognostic prediction of gliomas and supporting personalized treatment strategies.


Assuntos
Aprendizado Profundo , Glioma , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glutationa/metabolismo , Humanos , Prognóstico
5.
Opt Express ; 30(20): 36073-36086, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258544

RESUMO

High-performance demodulation of Sagnac effect is of great importance for rotation rate measurement in inertial navigation system. In this paper, we propose a flexible measurement of rotation rate based on a phase-controlled microwave photonic filter (MPF), which incorporates an orthogonal double-sideband (ODSB) modulator, a Sagnac loop, a linearly chirped fiber Bragg grating (LCFBG), a polarizer, and a photodetector. The ODSB modulator is used to generate optical carrier (OC) and first-order sidebands with mutually orthogonal polarizations. For the MPF, its central frequency can be tuned through changing the phase difference between the OC and first-order sidebands thanks to the dispersion of the LCFBG. Therefore, if the OC and first-order sidebands are separated by a polarization beam splitter and then travel along the Sagnac loop in opposite directions, the rotation-induced phase difference between them will lead to a shift on the frequency response of the MPF. Thus, two ways can be adopted to detect the rotation rate of the Sagnac loop for different applications: monitoring the frequency response shift of the MPF and measuring the power variation at a certain frequency. Besides, the measurement sensitivity can be easily adjusted to satisfy specific requirements by tuning a polarization controller or choosing a different operating frequency. An experiment is performed to validate the proposed scheme. The results show that the maximum frequency shift of the MPF can reach 1.7 GHz at a rotation rate of 1 rad/s, and a scale factor of 0.016 mW/(rad/s) is obtained at 4 GHz.

6.
Appl Opt ; 61(12): 3473-3479, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35471444

RESUMO

Time-delayed reservoir computing (RC) is a brain inspired paradigm for processing temporal information, with simplification in the network's architecture using virtual nodes embedded in a temporal delay line. In this work, a novel, to the best of our knowledge, RC system based on a dual-loop optoelectronic oscillator is proposed to enhance the prediction and classification. The hardware is compact and easy to implement, and only a section of fiber compared to the traditional optoelectronic oscillator reservoir is added to conform the dual-loop scheme. Compared with the traditional reservoir, a remarkable performance of the proposed RC system is demonstrated by simulation on three well-known tasks, namely the nonlinear auto regressive moving average (NARMA10) task, signal waveform recognized task, and handwritten numeral recognition. The parameter optimization in the NARMA10 task is presented with influenced factors. The novel RC system finally obtains a normalized mean square error at 0.0493±0.007 in NARMA10 task, 6.172×10-6 in signal waveform recognized task, and a word error rate at 9% in handwritten numeral recognition with suitable parameters.


Assuntos
Redes Neurais de Computação , Semicondutores , Simulação por Computador
7.
Appl Opt ; 61(33): 9860-9867, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606816

RESUMO

In this paper, we propose and demonstrate a novel, to the best of knowledge, filter-free photonics-assisted microwave frequency translator with a tunable phase shift and amplitude. The pivotal component of the proposed scheme is an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator, which is applied to generate a polarization orthogonal carrier-suppressed single sideband modulation signal and frequency shifted optical carrier signal. The polarization-multiplexed optical signal outputs from the DP-QPSK modulator is then sent to a photodetector (PD) via a polarization controller (PC) and a polarizer to implement photoelectric conversion. The electrical signal output from the PD is the desired frequency translated microwave signal, and the amount of frequency shift is determined by the frequency of the sawtooth wave applied to the DP-QPSK modulator. In addition, since the PC can be used to adjust the polarization angle and introduce a phase difference between the two orthogonally polarized optical signals, the phase shift and amplitude of the obtained translated signal can also be easily tuned. A theoretical analysis and simulation experiment are carried out to verify the feasibility of the proposed scheme. The simulation results show that the novel scheme can realize frequency translation with a 360° continuously tunable phase shift and adjustable amplitude for both a single-tone signal and linearly frequency modulated signal with a 50 MHz bandwidth. The spurious suppression ratios of the single-tone signal and LFM signal after frequency translation are larger than 48 and 30 dB, respectively.

8.
Opt Express ; 29(24): 38989-39000, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809271

RESUMO

An optoelectronic oscillator (OEO)-based fiber optic current sensor (FOCS) with greatly improved sensitivity is proposed and experimentally demonstrated. A microwave photonic filter (MPF) induced by the dispersion effect of a linearly chirped fiber Bragg grating (LCFBG) is used to select the frequency of the OEO oscillating signal. A two-tap MPF formed by a polarization multiplexed composite cavity is cascaded to achieve a stable single mode oscillation. When the current changes, the magneto-optic phase shift induced by Faraday effect will be introduced between the left and right circularly polarized lights transmitted in the reflective sensing unit. The magneto-optic phase shift is converted to the phase difference between the optical carrier and sidebands through a LiNbO3 Mach-Zehnder modulator. This phase difference is the decisive factor for the center frequency of the cascaded MPF as well as the oscillating frequency. Therefore, the current can be measured in the microwave frequency domain, which can improve the interrogation speed and accuracy to a large extent. The experimental results show that the oscillating frequency shifts up to 407.9 MHz as the current increases by 1 A.

9.
Opt Lett ; 46(15): 3753-3756, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329273

RESUMO

This Letter presents a novel, to the best of our knowledge, linearized analog photonic link (APL) based on a phase-coherent orthogonal light wave generator that consists of a polarization-dependent Mach-Zehnder modulator (MZM) and a polarization controller (PC). By adjusting the PC and bias voltage of MZM, the third-order intermodulation (IMD3) terms can be suppressed while retaining a high gain for the fundamental terms, which indicates that the spurious free dynamic range (SFDR) of the proposed APL can be much improved. To further verify the feasibility of the proposed APL, a proof-of-concept experiment is performed, and the performances are compared with conventional APL. The experimental results demonstrate that a 14 dB improvement in the fundamental to IMD3 power ratio and an SFDR of 100.2dB⋅Hz2/3 or 119.1dB⋅Hz2/3 for a noise floor of -139dBm/Hz or -163.9dBm/Hz are achieved. In addition, an orthogonal frequency division multiplexing signal with 30 MHz bandwidth centered at 2.5 GHz is delivered by our proposed APL, whose signal-to-noise ratio is increased by 10 dB, compared to conventional APL.

10.
Appl Opt ; 60(27): 8579-8587, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612961

RESUMO

A multiband radio-over-fiber system for a fifth-generation (5G) mobile communication technology mobile fronthaul network is proposed, which can transmit radio frequency (RF) signals in four different frequency bands of 700 MHz, 1.8 GHz, 3.5 GHz, and 26 GHz with different data rates simultaneously. The proposed system can satisfy the multiscenario demand of 5G and realize 4G/5G coexistence. A dual-polarization binary phase-shift keying modulator is utilized to alleviate the interference between multiple-frequency bands. The system is analyzed theoretically and verified through simulation. The variations of error vector magnitudes (EVMs) of four transmitted RF signals in function of the received optical power (ROP) are investigated. The simulation results show that the system has good performance after 10 km standard single-mode fiber (SMMF) transmission. When the ROP is above -3.3dBm, the EVM of the system conforms to the 3GPP specification. The power penalty of the system is within 1.9 dB at the 3GPP EVM performance specification after transmitting over a 10 km SSMF.

11.
Bioprocess Biosyst Eng ; 43(11): 2065-2074, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32583175

RESUMO

Sepsis, ensuing from unrestrained inflammatory replies to bacterial infections, endures with high injury and mortality worldwide. Presently, active sepsis management is missing in the hospitals during the surgery, and maintenance remnants mainly helpful. Now, we have constructed the macrophage bio-mimic nanoparticles for the treatment of sepsis and its management. Biomimetic macrophage nanoparticles containing a recyclable polymeric nanoparticle covered with cellular membrane resulting from macrophages (represented PEG-Mac@NPs) have an antigenic external similar to the cells. The PEG-Mac@NPs, Isorhamnetin (Iso) on the free LPS encouraged endotoxin in BALB/c mice through evaluating the nitric acid, TNF-α, and IL-6. Further, the COX-2 and iNOS expression ratio was examined to recognize the connection of several trails to find the exact mode of action PEG-Mac@NPs and Iso. The outcome reveals that the PEG-Mac@NPs inhibited and LPS triggered the NO production though the macrophages peritoneal. Furthermore, the anti-inflammatory possessions were additionally categorized through the reduction of COX-2 and iNOS protein expressions. Engaging PEG-Mac@NPs as a biomimetic decontamination approach displays potential for refining sepsis patient consequences, possibly in the use of sepsis management.


Assuntos
Membrana Celular/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Polímeros/química , Sepse/terapia , Engenharia Tecidual/métodos , Animais , Biomimética , Antígenos CD40/metabolismo , Proliferação de Células , Sobrevivência Celular , Ciclo-Oxigenase 2/metabolismo , Endotoxinas/química , Feminino , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo II/metabolismo , Baço/metabolismo , Sais de Tetrazólio/química , Tiazóis/química
12.
Opt Express ; 27(1): 252-264, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30645372

RESUMO

A novel differential intensity-measurement high-sensitivity refractive index (RI) sensor based on cascaded dual-wavelength fiber laser and single-mode-no-core-hollow-core-no-core-single-mode (SNHNS) structure is proposed and demonstrated. The sensing unit consists of one uniform fiber Bragg grating (FBG) and an SNHNS structure as all-fiber interferometer filter. The dual-wavelength fiber laser has a ring cavity composed of two FBGs with central wavelengths of 1550.10nm and 1553.61nm. Through monitoring the wavelength shift and the output power difference of the dual-wavelength fiber laser, the simultaneous measurement for RI and temperature is realized. In our experiment, the proposed fiber laser sensor exhibits high RI sensitivities of -193.1dB/RIU and 174.8dB/RIU in the range of 1.334-1.384. The relative variation of output power at the two FBG wavelengths shows a higher RI sensitivity of -367.9dB/RIU with better stability, which is greater than the traditional modal interferometer structure. Meanwhile, the temperature sensitivity of the proposed sensor is 8.53 × 10-3nm/°C, and the changes of laser output power caused by temperature are -0.223dB/°C and 0.215dB/°C.

13.
Virol J ; 16(1): 113, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511029

RESUMO

BACKGROUND: Trichoderma spp. are used extensively in agriculture as biological control agents to prevent soil-borne plant diseases. In recent years, mycoviruses from fungi have attracted increasing attention due to their effects on their hosts, but Trichoderma mycoviruses have not been the subject of extensive study. We sought to discover novel mycoviruses from Trichoderma spp. and to determine the effects of the biocontrol function of Trichoderma spp. METHODS: Mycoviruses were screened by dsRNA extraction and metagenomic analysis. RT-PCR, 5' RACE, and 3' RACE were used to obtain the genome sequence. MEGA software was used to classify the new mycovirus. The effects of the identified mycovirus on the biological properties of the host strain 525 were evaluated using cucumber plants and Fusarium oxysporum f. sp. cucumerinum. RESULTS: A novel mycovirus, Trichoderma harzianum mycovirus 1 (ThMV1) (accession number MH155602), was discovered in Trichoderma harzianum strain 525, a soil-borne fungus collected from Inner Mongolia, China. The mycovirus exhibited a double-stranded RNA (dsRNA) genome with a complete genome sequence of 3160 base pairs and two open reading frames (ORFs) on the negative strand. Phylogenetic analysis indicated that it belongs to an unclassified family of dsRNA mycoviruses. The removal of ThMV1 from the host 525 strain reduced host biomass production and improved the biocontrol capability of the host for Fusarium oxysporum f. sp. cucumerinum. At same time, the presence of ThMV1 improved the growth of cucumber. CONCLUSION: ThMV1 is a new unclassified mycovirus found in T. harzianum. It not only affects the phenotype of the host strain but also reduces its biocontrol function, which sheds light on the interaction between the mycovirus and Trichoderma spp.


Assuntos
Micovírus/genética , Micovírus/isolamento & purificação , Vírus de RNA/isolamento & purificação , RNA de Cadeia Dupla , Trichoderma/virologia , Agentes de Controle Biológico , Metagenômica , Fases de Leitura Aberta , RNA Viral/genética , Sequenciamento Completo do Genoma
14.
Arch Virol ; 164(4): 1213-1216, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30746561

RESUMO

A new mycovirus was identified in Trichoderma harzianum strain 137 isolated in Xinjiang province, China. The whole genome sequence of the mycovirus was determined by metagenomic sequencing, RT-PCR, and RACE cloning. The mycovirus contained two genomic segments. The first segment was 2088 bp long and contained a single ORF (ORF1) encoding the RNA-dependent RNA polymerase (RdRP) (72.26 kDa). The second segment was 1634 bp long and also contained a single ORF (ORF2) encoding a hypothetical protein of 37.472 kDa. We named this novel mycovirus "Trichoderma harzianum bipartite mycovirus 1" (ThBMV1). Phylogenetic analysis showed that ThBMV1 clusters with other unclassified dsRNA mycoviruses.


Assuntos
Micovírus/isolamento & purificação , Genoma Viral , Trichoderma/virologia , Sequência de Bases , China , Micovírus/classificação , Micovírus/genética , Dados de Sequência Molecular , Filogenia , Proteínas Virais/genética , Sequenciamento Completo do Genoma
15.
Opt Express ; 26(18): 23854-23867, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184881

RESUMO

Both plasmon-phonon-polariton (SPP-PHP) modes and phonon-polariton (PHP) modes supported in graphene-coated hexagon boron nitride (h-BN) single nanowire are presented. The field distributions of the lowest 5 order modes of SPP-PHP modes supported in graphene-coated hexagon boron nitride nanowire pairs (SPP-PHP-GHNP) and the lowest 5 order modes of PHP modes supported in graphene-coated hexagon boron nitride nanowire pairs (GHNP) are also demonstrated and analyzed, respectively. The results of numerical calculation show that SPP-PHP-GHNP mode 0 owns the strongest confinement and lowest loss among the lowest 5 order modes of SPP-PHP-GHNP. Furthermore, the field enhancement of SPP-PHP-GHNP mode 0 can reach over 105 by controlling the geometry parameters of GHNP. Meanwhile, the influence of tuning the Fermi level of graphene on the field enhancement is also presented in the paper. The proposed structure may improve the development of graphene-h-BN-based optoelectronic devices.

16.
Opt Express ; 26(20): 25617-25629, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469661

RESUMO

Terahertz (THz) polarization-maintaining waveguides, which have been considered fundamental elements in polarization-sensitive THz systems, are promising platforms in developing functional THz devices. Here, we propose a THz grating based on a subwavelength rectangular polymer waveguide, which filters two polarization states simultaneously. The proposed gratings are characterized and discussed using numerical simulations. We observe two transmission dips with over a 20.9 dB extinction ratio (ER) and around a 21.1 GHz full-width half-maximum (FWHM), where the reflective frequencies of the two polarization waves and the separation between them can be harnessed with appropriate structure designs. Furthermore, we demonstrate that the grating can operate as a polarization-maintaining narrow bandpass filter (ER>12.3 dB and FWHM<1.7 GHz) by introducing a π-phase shift. This work has the potential to open a new avenue for steering polarized THz radiation using the waveguide-based filters, which could be integrated in THz polarization-sensitive imaging, sensing, and wireless communication systems.

17.
Opt Express ; 26(21): 27628-27638, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469825

RESUMO

A magnetic field sensor using a dual-frequency optoelectronic oscillator (OEO) incorporating cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot (MA-FBG-FP) and FBG-FP filters is proposed and demonstrated. In the OEO resonant cavity, two microwave signals are generated, whose oscillation frequencies are determined by the FBG-FP filter and MA-FBG-FP filter filters with two ultra-narrow notches and two laser sources. Due to the characteristics of MA and FBG, the two generated microwave signals show different magnetic field and temperature sensitivities. By monitoring the variations of two oscillating frequencies and the beat signal using a digital signal processor, the simultaneous measurement for the magnetic field and temperature can be realized. The proposed sensor has the advantages of high-speed and high-resolution measurement, which make it very attractive for practical magnetic field sensing applications. The sensitivities of the proposed OEO sensor for magnetic field and temperature are experimentally measured to be as high as -38.4MHz/Oe and -1.23 or -2.45 GHz/°C corresponding to the MA-FBG-FP filter and FBG-FP filter, respectively.

18.
Opt Lett ; 43(12): 2799-2802, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905692

RESUMO

A novel scheme for angular velocity measurement is proposed and demonstrated by using an optoelectronic oscillator (OEO) incorporating a Sagnac interferometer. In the OEO resonant cavity, the optical carrier (OC) and the first-order sidebands propagate in opposite directions in the Sagnac loop. Thus, the rotation-induced Sagnac phase difference between the OC and first-order sidebands will produce an oscillating frequency shift of the OEO which is proportional to the rotation angular velocity. Then a high-sensitivity angular velocity measurement is realized by monitoring the oscillating microwave frequency. The system is free from the lock-in problem, and the sensitivity scale is measured to be 51.8 kHz/(rad/s) which is equivalent to a minimally detectable angular velocity of 3.98°/h with a frequency shift of 1 Hz.

19.
Virus Genes ; 53(2): 266-274, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27900587

RESUMO

Wheat dwarf virus (WDV) adversely affects cereal production in Asia, Europe, and North Africa. In this study, sequences of several WDV isolates from Iran which is located in the Fertile Crescent were analyzed. Analysis revealed a new geographic cluster for WDV-Wheat from Iran. Recombination analysis demonstrated the existence of several breakpoints in different regions of the viral genome. Data analysis demonstrated that WDV-Barley has an older history and lower diversity than WDV-Wheat. Sequence analysis identified a rare occasion of a co-infection of wheat with WDV-Wheat and WDV-Barley.


Assuntos
Geminiviridae/genética , Genoma Viral/genética , Doenças das Plantas/genética , Triticum/virologia , Ásia , Europa (Continente) , Geminiviridae/classificação , Geminiviridae/patogenicidade , Variação Genética , Hordeum/genética , Hordeum/virologia , Irã (Geográfico) , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Triticum/genética
20.
Plant Dis ; 101(12): 1980-1989, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30677375

RESUMO

Dasheen mosaic virus (DsMV) is one of the major viruses affecting taro (Colocasia esculenta) production worldwide. Whole genome sequences were determined for two DsMV strains, Hawaii Strain I (KY242358) and Hawaii Strain II (KY242359), from taro in Hawaii. They represent the first full-length coding sequences of DsMV reported from the United States. Hawaii Strains I and II were 77 and 85% identical, respectively, with other completely sequenced DsMV isolates. Hawaii Strain I was most closely related to vanilla mosaic virus (VanMV) (KX505964.1), a strain of DsMV infecting vanilla in the southern Pacific Islands. Hawaii Strain II was most closely related to a taro DsMV isolate CTCRI-II-14 (KT026108.1) from India. Phylogenetic analysis of all available DsMV isolates based on amino acid sequences of their coat protein showed some correlation between host plant and genetic diversity. Analyses of DsMV genome sequences detected three recombinants from China and India among the six isolates with known complete genome sequences. The DsMV strain NC003537.1 from China is a recombinant of KJ786965.1 from India and Hawaii Strain II. Another DsMV strain KT026108.1 is a recombinant of Hawaii Strain II and NC003537.1 from China. The third DsMV strain KJ786965.1 from India is a recombinant of Hawaii Strain II and NC003537.1 from China. To our knowledge, this is the first report of recombination events in DsMV. Both Hawaii Strains I and II of DsMV were found widespread throughout the Hawaiian islands.


Assuntos
Colocasia , Potyvirus , Proteínas do Capsídeo/genética , Colocasia/virologia , Havaí , Filogenia , Potyvirus/classificação , Potyvirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA