Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 212(1): 81-95, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038392

RESUMO

Antimicrobial peptides/proteins (AMPs) constitute a critical component of gut immunity in animals, protecting the gut from pathogenic bacteria. However, the interactions between AMPs and gut microbiota remain elusive. In this study, we show that leukocyte-derived chemotaxin-2 (LECT2)-b, a recently discovered AMP, helps maintain gut homeostasis in grass carp (Ctenopharyngodon idella), one of the major farmed fish species globally, by directly regulating the gut microbiota. Knockdown of LECT2-b resulted in dysregulation of the gut microbiota. Specifically, LECT2-b deficiency led to the dominance of Proteobacteria, consisting of proinflammatory bacterial species, over Firmicutes, which includes anti-inflammatory bacteria. In addition, the opportunistic pathogenic bacteria genus Aeromonas became the dominant genus replacing the probiotic bacteria Lactobacillus and Bacillus. Further analysis revealed that this effect was due to the direct and selective inhibition of certain pathogenic bacterial species by LECT2-b. Moreover, LECT2-b knockdown promoted biofilm formation by gut microbiota, resulting in tissue damage and inflammation. Importantly, LECT2-b treatment alleviated the negative effects induced by LECT2-b knockdown. These findings highlight the crucial role of LECT2-b in maintaining the gut microbiota homeostasis and mucosal health. Overall, our study provides important data for understanding the roles of AMPs in the regulation of gut homeostasis in animals.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Probióticos , Animais , Bactérias , Homeostase
2.
J Immunol ; 211(6): 964-980, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37578390

RESUMO

Teleost B cells are primitive lymphocytes with both innate and adaptive immune functions. However, the heterogeneity and differentiation trajectory of teleost B cells remain largely unknown. In this study, the landscape of grass carp IgM+ (gcIgM+) B cells was revealed by single-cell RNA sequencing. The results showed that gcIgM+ B cells mainly comprise six populations: (im)mature B cells, innate B cells, proliferating B cells, plasma cells, CD22+ cells, and CD34+ cells, among which innate B cells and proliferating B cells were uncommon B cell subsets with, to our knowledge, new characteristics. Remarkably, three functional IgMs were discovered in grass carp, and a significant percentage of gcIgM+ B cells, especially plasma cells, expressed multiple Igµ genes (Igµ1, Igµ2, and/or Igµ3). More importantly, through single-cell sorting combined with Sanger sequencing, we found that distinct VHDJH recombination patterns of Igµ genes were present in single IgM+ B cells, indicating that individual teleost B cells might produce multiple Abs by coexpressing rearranged IgM subclass genes. Moreover, the percentage of IgM1highIgM2highIgM3high plasma cells increased significantly after bacterial infection, suggesting that individual plasma cells might tend to produce multiple IgMs to resist the infection in teleost fish. In summary, to our knowledge, this study not only helps to uncover the unique heterogeneity of B cells in early vertebrates but also provided significant new evidence supporting the recently proposed "one cell-multiple Abs" paradigm, challenging the classical rule of "one cell-one Ab."


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Animais , Imunidade Inata/genética , Proteínas de Peixes/genética , Imunoglobulina M , Homeostase
3.
J Immunol ; 208(8): 2037-2053, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35365566

RESUMO

In vertebrates, leukocyte-derived chemotaxin-2 (LECT2) is an important immunoregulator with conserved chemotactic and phagocytosis-stimulating activities to leukocytes during bacterial infection. However, whether LECT2 possesses direct antibacterial activity remains unknown. In this article, we show that, unlike tetrapods with a single LECT2 gene, two LECT2 genes exist in teleost fish, named LECT2-a and LECT2-b Using grass carp as a research model, we found that the expression pattern of grass carp LECT2-a (gcLECT2-a) is more similar to that of LECT2 in tetrapods, while gcLECT2-b has evolved to be highly expressed in mucosal immune organs, including the intestine and skin. Interestingly, we found that gcLECT2-b, with conserved chemotactic and phagocytosis-stimulating activities, can also kill Gram-negative and Gram-positive bacteria directly in a membrane-dependent and a non-membrane-dependent manner, respectively. Moreover, gcLECT2-b could prevent the adherence of bacteria to epithelial cells through agglutination by targeting peptidoglycan and lipoteichoic acid. Further study revealed that gcLECT2-b can protect grass carp from Aeromonas hydrophila infection in vivo, because it significantly reduces intestinal necrosis and tissue bacterial load. More importantly, we found that LECT2 from representative tetrapods, except human, also possesses direct antibacterial activities, indicating that the direct antibacterial property of LECT2 is generally conserved in vertebrates. Taken together, to our knowledge, our study discovered a novel function of LECT2 in the antibacterial immunity of vertebrates, especially teleost fish, greatly enhancing our knowledge of this important molecule.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila , Animais , Antibacterianos , Carpas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Inata , Leucócitos/metabolismo
4.
BMC Genomics ; 23(1): 271, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392810

RESUMO

BACKGROUND: The grass carp has great economic value and occupies an important evolutionary position. Genomic information regarding this species could help better understand its rapid growth rate as well as its unique body plan and environmental adaptation. RESULTS: We assembled the chromosome-level grass carp genome using the PacBio sequencing and chromosome structure capture technique. The final genome assembly has a total length of 893.2 Mb with a contig N50 of 19.3 Mb and a scaffold N50 of 35.7 Mb. About 99.85% of the assembled contigs were anchored into 24 chromosomes. Based on the prediction, this genome contained 30,342 protein-coding genes and 43.26% repetitive sequences. Furthermore, we determined that the large genome size can be attributed to the DNA-mediated transposable elements which accounted for 58.9% of the repetitive sequences in grass carp. We identified that the grass carp has only 24 pairs of chromosomes due to the fusion of two ancestral chromosomes. Enrichment analyses of significantly expanded and positively selected genes reflected evolutionary adaptation of grass carp to the feeding habits. We also detected the loss of conserved non-coding regulatory elements associated with the development of the immune system, nervous system, and digestive system, which may be critical for grass carp herbivorous traits. CONCLUSIONS: The high-quality reference genome reported here provides a valuable resource for the genetic improvement and molecular-guided breeding of the grass carp.


Assuntos
Carpas , Animais , Carpas/genética , Cromossomos/genética , Evolução Molecular , Genoma , Filogenia
5.
Carbohydr Polym ; 281: 119073, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074109

RESUMO

Chitosan oligosaccharide (COS) is an attractive immunopotentiator capable of driving humoral immunity in vertebrates, but its cellular and molecular mechanisms still require elucidation. In this study, COS induced the proliferation and differentiation of splenic IgM+ B cells into IgMlo and IgMhi B cell subsets in grass carp (Ctenopharyngodon idella). The IgMlo B cells were further identified as short-lived plasmablasts that secreted natural IgM with binding-abilities to lipopolysaccharide (LPS) and peptidoglycan (PGN). Moreover, the mannose receptor (MR) and integrins were discovered and identified as the binding-receptors of COS on IgMlo plasmablasts. The MR synergized with integrins to trigger intracellular signal transduction to boost plasmablast generation and expansion. Notably, IgMlo plasmablasts originally generated in spleen but they migrated into blood to secrete natural IgM, which augmented the serum bactericidal activity. Taken together, this study revealed the cellular and molecular mechanisms of COS-triggered humoral immunity in fish.


Assuntos
Carpas , Quitosana , Animais , Quitosana/farmacologia , Proteínas de Peixes , Imunidade Humoral , Imunidade Inata , Imunoglobulina M , Oligossacarídeos/farmacologia
6.
Front Immunol ; 13: 885005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784316

RESUMO

The moderate activation of T cells in mammals requires the costimulatory molecules, CD80 and CD86, on antigen-presenting cells to interact with their respective T cell receptors, CD28 and CD152 (CTLA-4), to promote costimulatory signals. In contrast, teleost fish (except salmonids) only possess CD80/86 as their sole primordial costimulatory molecule. However, the mechanism, which underlies the interaction between CD80/86 and its receptors CD28 and CD152 still requires elucidation. In this study, we cloned and identified the CD80/86, CD28, and CD152 genes of the grass carp (Ctenopharyngodon idella). The mRNA expression analysis showed that CD80/86, CD28, and CD152 were constitutively expressed in various tissues. Further analysis revealed that CD80/86 was highly expressed in IgM+ B cells. Conversely, CD28 and CD152 were highly expressed in CD4+ and CD8+ T cells. Subcellular localization illustrated that CD80/86, CD28, and CD152 are all located on the cell membrane. A yeast two-hybrid assay exhibited that CD80/86 can bind with both CD28 and CD152. In vivo assay showed that the expression of CD80/86 was rapidly upregulated in Aeromonas hydrophila infected fish compared to the control fish. However, the expression of CD28 and CD152 presented the inverse trend, suggesting that teleost fish may regulate T cell activation through the differential expression of CD28 and CD152. Importantly, we discovered that T cells were more likely to be activated by A. hydrophila after CD152 was blocked by anti-CD152 antibodies. This suggests that the teleost CD152 is an inhibitory receptor of T cell activation, which is similar to the mammalian CD152. Overall, this study begins to define the interaction feature between primordial CD80/86 and its receptors CD28 and CD152 in teleost fish, alongside providing a cross-species understanding of the evolution of the costimulatory signals throughout vertebrates.


Assuntos
Antígenos CD28 , Linfócitos T CD8-Positivos , Animais , Antígenos CD/genética , Antígeno B7-1/genética , Antígenos CD28/genética , Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/genética , Mamíferos
7.
Front Immunol ; 13: 873982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386704

RESUMO

The complement system is an important part of the immune system of teleost fish. Besides, teleost B cells possess both phagocytic activity and adaptive humoral immune function, unlike mammalian B1 cells with phagocytic activity and B2 cells specific to adaptive humoral immunity. However, the cross talk between complement system and phagocytic B cells in teleost fish still requires elucidation. Here, we show that, unlike tetrapods with a single C3 gene, nine C3 genes were identified from the grass carp (Ctenopharyngodon idella) genome, named C3.1-C3.9. Expression analysis revealed that C3.1 is the dominant C3 molecule in grass carp, for its expression was significantly higher than that of the other C3 molecules both at the mRNA and protein levels. The C3a fragment of C3.1 (C3a.1) was determined after the conserved C3 convertase cleavage site. Structural analysis revealed that C3a.1 consists of four α-helixes, with the C-terminal region forming a long α-helix, which is the potential functional region. Interestingly, we found that the recombinant GST-C3a.1 protein and the C-terminal α-helix peptide of C3a.1 both could significantly enhance the phagocytic activity of IgM+ B cells. Further study revealed that the C3a receptor (C3aR) was highly expressed in grass carp IgM+ B cells, and the phagocytosis-stimulating activity of C3a.1 could be dramatically inhibited by the anti-C3aR antibodies, indicating that C3a.1 performed the stimulating function through C3aR on IgM+ B cells. Taken together, our study not only uncovered the novel phagocytosis-stimulating activity of C3a, but also increased our knowledge of the cross talk between complement system and phagocytic B cells in teleost fish.


Assuntos
Carpas , Complemento C3a , Animais , Carpas/genética , Carpas/metabolismo , Imunoglobulina M , Fagocitose
8.
Dev Comp Immunol ; 106: 103613, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31935401

RESUMO

Teleost fish are the most primitive bony vertebrates that contain B cells; thus, comparative analysis of teleost naïve/mature B cells and plasma cells can provide helpful evidence for understanding the evolution paradigms of these two B-cell subpopulations in vertebrates. In this study, we developed monoclonal antibody against grass carp IgM and identified two different IgM+ cell subsets: IgM+ lymphocytes (Lym), resembling naïve/mature B cells, and IgM+ myeloid cells (Mye), resembling plasma cells. Like plasma cells in mammals, the size of IgM+ Mye is significantly larger than that of IgM+ Lym, as revealed by flow cytometric analysis and transmission electron microscopy. The IgM+ Mye were further verified as plasma cells because they showed gene expression patterns similar with those of human plasma cells and a great capacity to secrete IgM. Like mammalian IgM+ and IgA+ plasma cells, not IgG+ plasma cells, grass carp IgM+ Mye also expressed membrane immunoglobulins, a feature conserved in IgM+ plasma cells in vertebrates. Furthermore, recombinant CD40L or IL-21 alone could induce the plasma cell generation and IgM secretion, while the combination of CD40L and IL-21 had greater effect on IgM secretion, but not on plasma cell generation. This study fills an important gap in the knowledge of plasma cells in teleost fish and provides critical insights into the conserved evolution of IgM+ plasma cells in vertebrates.


Assuntos
Subpopulações de Linfócitos B/imunologia , Carpas/imunologia , Proteínas de Peixes/genética , Células Mieloides/imunologia , Plasmócitos/imunologia , Animais , Formação de Anticorpos , Ligante de CD40/imunologia , Diferenciação Celular , Células Cultivadas , Sequência Conservada/genética , Evolução Molecular , Proteínas de Peixes/metabolismo , Imunoglobulina M/metabolismo , Interleucinas/metabolismo , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA