Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 38(5): e5840, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402901

RESUMO

The incidence of colibacillosis in poultry is on the rise, significantly affecting the chicken industry. Ceftiofur sodium (CS) is frequently employed to treat this disease, resulting in lipopolysaccharide (LPS) buildup. Processing plays a vital role in traditional Chinese veterinary medicine. The potential intervention in liver injury by polysaccharides from the differently processed products of Angelica sinensis (PDPPAS) induced by combined CS and LPS remains unclear. This study aims to investigate the protective effect of PDPPAS on chicken liver injury caused by CS combined with LPS buildup and further identify the polysaccharides with the highest hepatoprotective activity in chickens. Furthermore, the study elucidates polysaccharides' intervention mechanism using tandem mass tag (TMT) proteomics and multiple reaction monitoring (MRM) methods. A total of 190 1-day-old layer chickens were randomly assigned into 12 groups, of which 14 chickens were in the control group and 16 in other groups, for a 10-day trial. The screening results showed that charred A. sinensis polysaccharide (CASP) had the most effective and the best hepatoprotective effect at 48 h. TMT proteomics and MRM validation results demonstrated that the intervention mechanism of the CASP high-dose (CASPH) intervention group was closely related to the protein expressions of FCER2, TBXAS1, CD34, AGXT, GCAT, COX7A2L, and CYP2AC1. Conclusively, the intervention mechanism of CASPH had multitarget, multicenter regulatory features.


Assuntos
Angelica sinensis , Galinhas , Fígado , Polissacarídeos , Proteômica , Espectrometria de Massas em Tandem , Animais , Angelica sinensis/química , Proteômica/métodos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/análise , Espectrometria de Massas em Tandem/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteoma/análise , Proteoma/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
2.
EMBO J ; 38(18): e100948, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31418899

RESUMO

As a ubiquitous bacterial secondary messenger, c-di-GMP plays key regulatory roles in processes such as bacterial motility and transcription regulation. CobB is the Sir2 family protein deacetylase that controls energy metabolism, chemotaxis, and DNA supercoiling in many bacteria. Using an Escherichia coli proteome microarray, we found that c-di-GMP strongly binds to CobB. Further, protein deacetylation assays showed that c-di-GMP inhibits the activity of CobB and thereby modulates the biogenesis of acetyl-CoA. Interestingly, we also found that one of the key enzymes directly involved in c-di-GMP production, DgcZ, is a substrate of CobB. Deacetylation of DgcZ by CobB enhances its activity and thus the production of c-di-GMP. Our work establishes a novel negative feedback loop linking c-di-GMP biogenesis and CobB-mediated protein deacetylation.


Assuntos
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Sirtuínas/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , GMP Cíclico/metabolismo , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Análise Serial de Proteínas/métodos , Proteômica/métodos , Sistemas do Segundo Mensageiro
3.
Mol Cell Proteomics ; 20: 100059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33109704

RESUMO

Antibodies play essential roles in both diagnostics and therapeutics. Epitope mapping is essential to understand how an antibody works and to protect intellectual property. Given the millions of antibodies for which epitope information is lacking, there is a need for high-throughput epitope mapping. To address this, we developed a strategy, Antibody binding epitope Mapping (AbMap), by combining a phage displayed peptide library with next-generation sequencing. Using AbMap, profiles of the peptides bound by 202 antibodies were determined in a single test, and linear epitopes were identified for >50% of the antibodies. Using spike protein (S1 and S2)-enriched antibodies from the convalescent serum of one COVID-19 patient as the input, both linear and potentially conformational epitopes of spike protein specific antibodies were identified. We defined peptide-binding profile of an antibody as the binding capacity (BiC). Conceptually, the BiC could serve as a systematic and functional descriptor of any antibody. Requiring at least one order of magnitude less time and money to map linear epitopes than traditional technologies, AbMap allows for high-throughput epitope mapping and creates many possibilities.


Assuntos
COVID-19/imunologia , Mapeamento de Epitopos/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Ensaio de Imunoadsorção Enzimática , Epitopos/metabolismo , Proteínas de Escherichia coli/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Soros Imunes/sangue , Soros Imunes/imunologia , Biblioteca de Peptídeos
4.
Arch Microbiol ; 204(3): 189, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194691

RESUMO

Truffles are the fruiting bodies of hypogeous fungi in the genus Tuber. Some truffle species usually grow in an area devoid of vegetation, called brûlé, but limited knowledge is available on the microbial composition and structure of them. Here, we investigated the bacterial and fungal communities of Tuber indicum ascocarps and soils inside and outside a characteristic brûlé from a poplar plantation with no truffle production history in northeastern China using a high-throughput sequencing approach. A predominance of members of the bacterial phylum Proteobacteria was observed in all samples. Members of Bacillus were the main genera in the ascocarps, while members of Lysobacter and unidentified Acidobacteria were more abundant in the soil. In addition, members of Gibberella, Fusarium, and Absidia were the dominant fungi in the ascocarps, while members of Tuber were enriched in the ascocarps and soils inside the brûlé. Some mycorrhization helper bacteria (Rhizobium) and ectomycorrhiza-associated bacteria (Lysobacter) were detected, indicating their potential roles in the complex development of underground fruiting bodies and brûlé formation. These findings may contribute to the protection and cultivation of truffles.


Assuntos
Ascomicetos , Microbiota , Ascomicetos/genética , Solo , Microbiologia do Solo
5.
Plant Cell Rep ; 41(10): 2037-2088, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35904590

RESUMO

KEY MESSAGE: Forty PaCRKs have been identified from sweet cherry and overexpression PaCRK1 in sweet cherry enhances its resistance to salt stress. Cysteine-rich receptor-like kinases (CRKs), a large subgroup of the receptor-like kinases, play an important role in plant development and stress response. However, knowledge about CRKs and its function against adverse environmental stresses in sweet cherry were lacking. In this study, 40 PaCRKs were identified from sweet cherry (Prunus avium) genome database. Phylogenetic analysis indicated that PaCRKs could be classified into six subgroups. Transcriptome analysis showed that the expression levels of most PaCRKs were changed under external environmental stresses. Functional study showed that PaCRK1 overexpression could enhance Arabidopsis and sweet cherry tolerance to salt stress. Moreover, biochemical analysis showed that PaCRK1 increased salt tolerance of sweet cherry by regulating the expression of antioxidation-related genes and their enzyme activities. This study provides a comprehensive understanding of PaCRKs in sweet cherry and elucidates the potential role of PaCRKs in response to various environmental stimuli.


Assuntos
Arabidopsis , Prunus avium , Arabidopsis/genética , Cisteína/metabolismo , Filogenia , Prunus avium/genética , Tolerância ao Sal/genética
6.
Biomed Chromatogr ; 36(6): e5362, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35393691

RESUMO

Chicken colibacillosis is one of the most severe diseases in the poultry industry. Ceftiofur sodium (CS) is often used to treat it in clinical practice and lipopolysaccharide (LPS) accumulates in the chicken's body. Previous experimental studies found that CS combined with LPS could induce liver injury in layer chickens, and polysaccharides from charred Angelica sinensis(CASP) had a better hepatoprotective effect than polysaccharides from unprocessed Angelica sinensis(UASP). However, the intervention mechanism was unclear. Thus, UPLC-Q/TOF-MS/MS-based metabonomics and transcriptomics were used in this study to clarify the hepatoprotective effect mechanism of CASP and UASP in layer chickens. Transcriptomics and enzyme-linked immunosorbent assay were used for biological verification of some critical mutual metabolic pathways screened with metabonomics. The comprehensive analysis results showed that in a layer chicken liver injury model built with LPS and CS, 12 critical metabolic pathways were disturbed, involving 10 important differential metabolites. The hepatoprotective effect mechanism of CASP is related to the arachidonic acid metabolism and mTOR signaling pathways, involving nine important differential metabolites. In contrast, the hepatoprotective effect mechanism of UASP is related to the arachidonic acid metabolism pathway, involving six important differential metabolites.


Assuntos
Angelica sinensis , Animais , Ácido Araquidônico , Galinhas , Lipopolissacarídeos , Metabolômica/métodos , Polissacarídeos/farmacologia , Espectrometria de Massas em Tandem
7.
Biomed Chromatogr ; 36(2): e5252, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34591996

RESUMO

Angelica sinensis (AS) is a common Traditional Chinese Medicine used for tonifying blood in China. Unprocessed AS and its four kinds of processed products (ASs) are used to treat blood deficiency syndrome in the country. The different blood-tonifying mechanisms of ASs remain unclear. In this work, a novel method integrating metabolomics and hematological and biochemical parameters was established to provide a complementary explanation of blood supplementation mechanism of ASs. Our results revealed that different ASs exhibited various blood supplementation effect, and that AS parched with alcohol demonstrated the best blood supplementation effect. Eight metabolites from liver tissue and 12 metabolites from spleen tissue were considered to be potential biomarkers. These biomarkers were involved in four metabolic pathways. Correlation analysis results showed that l-aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) exhibited a high positive or negative correlation with the aforesaid biochemical indicators. The blood-supplementation effect mechanism of ASs were related to four metabolic pathways. l-Aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) were the four key metabolites associated with the blood supplementation effect of ASs. This study gives a complementary explanation of the blood supplementation effect and mechanism of action of ASs.


Assuntos
Angelica sinensis/química , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Metaboloma/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Cromatografia Gasosa-Espectrometria de Massas , Ácido Linoleico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metabolômica/métodos , Camundongos , Baço/efeitos dos fármacos , Baço/metabolismo
8.
Mol Cell Proteomics ; 18(9): 1851-1863, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31308251

RESUMO

Systemic lupus erythematosus (SLE) is one of the most serious autoimmune diseases, characterized by highly diverse clinical manifestations. A biomarker is still needed for accurate diagnostics. SLE serum autoantibodies were discovered and validated using serum samples from independent sample cohorts encompassing 306 participants divided into three groups, i.e. healthy, SLE patients, and other autoimmune-related diseases. To discover biomarkers for SLE, a phage displayed random peptide library (Ph.D. 12) and deep sequencing were applied to screen specific autoantibodies in a total of 100 serum samples from 50 SLE patients and 50 healthy controls. A statistical analysis protocol was set up for the identification of peptides as potential biomarkers. For validation, 10 peptides were analyzed using enzyme-linked immunosorbent assays (ELISA). As a result, four peptides (SLE2018Val001, SLE2018Val002, SLE2018Val006, and SLE2018Val008) were discovered with high diagnostic power to differentiate SLE patients from healthy controls. Among them, two peptides, i.e. SLE2018Val001 and SLE2018Val002, were confirmed between SLE with other autoimmune patients. The procedure we established could be easily adopted for the identification of autoantibodies as biomarkers for many other diseases.


Assuntos
Lúpus Eritematoso Sistêmico/sangue , Biblioteca de Peptídeos , Peptídeos/sangue , Adulto , Área Sob a Curva , Doenças Autoimunes/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Reprodutibilidade dos Testes
9.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 628-635, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33637989

RESUMO

PD-1 plays an important role as an immune checkpoint. Sintilimab is a newly approved PD-1 antibody for cancer immunotherapy with an unknown binding epitope on PD-1. In this study, to elucidate the molecular mechanism by which sintilimab blocks PD-1 activation, we applied Antibody binding epitope Mapping (AbMap) to identify the binding epitope of sintilimab. An epitope was successfully identified, i.e. SLAPKA, aa 127-132. By constructing a series of point mutations, the dominant residues S127, L128, A129, P130, and A132 of PD-1 were further validated by western blot analysis, biolayer interferometry, and flow cytometry. Structural analysis showed that the epitope is partially within the binding interface of PD-1 and PD-L1, and this epitope also partially overlaps with that of nivolumab and pembrolizumab. These results demonstrate that sintilimab can attenuate PD-1 activation by directly competing with the interaction between PD-1 and PD-L1 through binding with the key residues of the FG loop on PD-1. This study also demonstrates the high efficiency and accuracy of AbMap for determining the binding epitope of therapeutic antibodies.


Assuntos
Anticorpos Monoclonais Humanizados/química , Antineoplásicos Imunológicos/química , Mapeamento de Epitopos , Epitopos/química , Receptor de Morte Celular Programada 1/química , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos Imunológicos/imunologia , Epitopos/imunologia , Humanos , Receptor de Morte Celular Programada 1/imunologia
10.
Pharm Biol ; 58(1): 1167-1176, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33222580

RESUMO

CONTEXT: Angelica sinensis (Oliv.) Diels (Apiaceae) (syn. Angelica polymorpha Maxim var. sinensis Oliver) processed with yellow rice wine (WAS) has a blood-supplementing effect. OBJECTIVE: To establish an optimal technology for preparing water decoction of WAS (WASD), and screen blood-supplementing fractions. MATERIALS AND METHODS: Ferulic acid and crude polysaccharide were used in optimizing the preparation technology for WASD through response surface methodology. The independent variables were liquid-solid ratio, soaking time, and extraction time. Eighty Kunming mice were randomly divided into normal control, model, and six intervention groups (n = 10). The intervention groups were given different WASD fractions by gavage (5 or 10 g/kg). The model intervention groups received acetylphenyl hydrazine (subcutaneous injection) and cyclophosphamide (intraperitoneal injection). Duration of study, 9 days. The components of blood-supplementing fractions were analyzed. RESULTS: The optimum extraction parameters were liquid-solid ratio, 7.69:1 mL/g; soaking time, 119.78 min; and extraction time, 143.35 min. The optimal OD value was 0.8437. RBC, WBC, and Hb in the water fraction (5, 10 g/kg) and n-butanol fraction (10 g/kg) intervention groups increased significantly compared with the model group (p < 0.05). Polysaccharide and caffeic acid contents of water fraction were 252.565 and 0.346 µg/mg, respectively; ferulic acid was not detected. Caffeic acid and ferulic acid contents of n-butanol fraction were 1.187 and 0.806 µg/mg, respectively, polysaccharide was not detected. CONCLUSIONS: The optimum preparation technology of WASD was obtained, and the water, n-butanol fractions were blood-supplementing fractions. This study provides a theoretical foundation for further application of WAS in the pharmaceutical industry.


Assuntos
Angelica sinensis/química , Sangue/efeitos dos fármacos , Oryza/química , Extratos Vegetais/farmacologia , Animais , Contagem de Células Sanguíneas , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Medicina Tradicional Chinesa , Camundongos , Raízes de Plantas/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Solventes , Espectrofotometria Ultravioleta , Timo/efeitos dos fármacos , Água , Vinho
11.
Mol Cell Proteomics ; 16(12): 2243-2253, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29018126

RESUMO

Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Ferritinas/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Proteômica/métodos , Proteínas Ribossômicas/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Grupo dos Citocromos b/química , Ferritinas/química , Células HEK293 , Humanos , Imunidade Inata , Macrófagos/citologia , Macrófagos/metabolismo , Espectrometria de Massas , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Análise Serial de Proteínas/métodos , Ligação Proteica , Proteínas Ribossômicas/química , Células THP-1
12.
Mol Cell Proteomics ; 16(8): 1491-1506, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28572091

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/metabolismo , Proteínas de Bactérias/genética , Parede Celular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteoma/genética , Proteômica , Transdução de Sinais
14.
Proteomics ; 18(23): e1800265, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30281201

RESUMO

Mycobacterium tuberculosis (Mtb) serine/threonine kinase PknG plays an important role in the Mtb-host interaction by facilitating the survival of Mtb in macrophages. However, the human proteins with which the PknG interacts, and the underlying molecular mechanisms are still largely unknown. In this study, a HuProt array is been applied to globally identify the host proteins to which PknG binds. In this way, 125 interactors are discovered, including a cyclophilin protein, CypA. This interaction between PknG and CypA is validated both in vitro and in vivo, and functional studies show that PknG significantly reduces the protein levels of CypA through phosphorylation, which consequently inhibit the inflammatory response through downregulation of NF-κB and ERK1/2 pathways. Phenotypically, overexpression of PknG reduces cytokine levels and promotes the survival of Mycobacterium smegmatis (Msm) in macrophages. Overall, it is expected that the PknG interactors identified in this study will serve as a useful resource for further systematic studies of the roles that PknG plays in the Mtb-host interactions.


Assuntos
Mycobacterium tuberculosis/metabolismo , Proteoma/análise , Proteínas de Bactérias/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
15.
Acta Biochim Biophys Sin (Shanghai) ; 46(7): 548-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24907045

RESUMO

Protein acetylation is one of the most abundant post-translational modifications and plays critical roles in many important biological processes. Based on the recent advances in mass spectrometry technology, in bacteria, such as Escherichia coli, tremendous acetylated proteins and acetylation sites have been identified. However, only one protein deacetylase, i.e. CobB, has been identified in E. coli so far. How CobB is regulated is still elusive. One right strategy to study the regulation of CobB is to globally identify its interacting proteins. In this study, we used a proteome microarray containing ∼4000 affinity-purified E. coli proteins to globally identify CobB interactors, and finally identified 183 binding proteins of high stringency. Bioinformatics analysis showed that these interacting proteins play a variety of roles in a wide range of cellular functions and are highly enriched in carboxylic acid metabolic process and hexose catabolic process, and also enriched in transferase and hydrolase. We further used bio-layer interferometry to analyze the interaction and quantify the kinetic parameters of putative CobB interactors, and clearly showed that CobB could strongly interact with TopA and AccC. The novel CobB interactors that we identified could serve as a start point for further functional analysis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Análise Serial de Proteínas , Proteoma , Ligação Proteica
16.
Tree Physiol ; 44(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38775231

RESUMO

Plant biomass is a highly promising renewable feedstock for the production of biofuels, chemicals and materials. Enhancing the content of plant biomass through endophyte symbiosis can effectively reduce economic and technological barriers in industrial production. In this study, we found that symbiosis with the dark septate endophyte (DSE) Anteaglonium sp. T010 significantly promoted the growth of poplar trees and increased plant biomass, including cellulose, lignin and starch. To further investigate whether plant biomass was related to sucrose metabolism, we analyzed the levels of relevant sugars and enzyme activities. During the symbiosis of Anteaglonium sp. T010, sucrose, fructose and glucose levels in the stem of poplar decreased, while the content of intermediates such as glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) and UDP-glucose (UDPG), and the activity of enzymes related to sucrose metabolism, including sucrose synthase (SUSY), cell wall invertase (CWINV), fructokinase (FRK) and hexokinase, increased. In addition, the contents of glucose, fructose, starch, and their intermediates G6P, F6P and UDPG, as well as the enzyme activities of SUSY, CWINV, neutral invertase and FRK in roots were increased, which ultimately led to the increase of root biomass. Besides that, during the symbiotic process of Anteaglonium sp. T010, there were significant changes in the expression levels of root-related hormones, which may promote changes in sucrose metabolism and consequently increase the plant biomass. Therefore, this study suggested that DSE fungi can increase the plant biomass synthesis capacity by regulating the carbohydrate allocation and sink strength in poplar.


Assuntos
Biomassa , Endófitos , Populus , Sacarose , Populus/metabolismo , Populus/crescimento & desenvolvimento , Populus/microbiologia , Sacarose/metabolismo , Endófitos/fisiologia , Endófitos/metabolismo , Ascomicetos/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Simbiose
17.
Food Chem Toxicol ; 190: 114796, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852756

RESUMO

Pulmonary fibrosis is the outcome of the prolonged interstitial pneumonia, characterized by excessive accumulation of fibroblasts and collagen deposition, leading to its development. This study aimed to study the changes in PI3K/AKT and NRF2/HO-1 signaling expression and intestinal microbiota in a rat model of a novel bleomycin-induced pulmonary fibrosis. The findings of our study showed the model was successfully established. The results showed that the alveolar septum in the model was significantly widened and infiltrated by severe inflammatory cells. Alveolar atrophy occurred due to the formation of multiple inflammatory foci. During this period, fibrous tissue was distributed in strips and patches, primarily around the pulmonary interstitium and bronchus. Moreover, lung damage and fibrosis progressively worsened over time. The mRNA expression of HO-1 and NRF2 in the model decreased while the mRNA expression of HIF-1α, VEGF, PI3K and AKT increased. Furthermore, it was observed to decrease the protein expression of E-cad, HO-1 and NRF2, and increase the protein expression of α-SMA and p-AKT. Additionally, this model leaded to an imbalance in the intestinal microbiota. This study demonstrate that the novel pulmonary fibrosis model activates the NRF2/HO-1 pathway and the PI3K/AKT pathway in rat lung tissues, and leading to intestinal barrier disorder.

18.
Front Vet Sci ; 11: 1390473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835897

RESUMO

Objective: Guanyu Zhixie Granule (GYZXG) is a traditional Chinese medicine compound with definite efficacy in intervening in gastric ulcers (GUs). However, the effect mechanisms on GU are still unclear. This study aimed to explore its mechanism against GU based on amalgamated strategies. Methods: The comprehensive chemical characterization of the active compounds of GYZXG was conducted using UHPLC-Q/TOF-MS. Based on these results, key targets and action mechanisms were predicted through network pharmacology. GU was then induced in rats using anhydrous ethanol (1 mL/200 g). The intervention effects of GYZXG on GU were evaluated by measuring the inhibition rate of GU, conducting HE staining, and assessing the levels of IL-6, TNF-α, IL-10, IL-4, Pepsin (PP), and epidermal growth factor (EGF). Real-time quantitative PCR (RT-qPCR) was used to verify the mRNA levels of key targets and pathways. Metabolomics, combined with 16S rRNA sequencing, was used to investigate and confirm the action mechanism of GYZXG on GU. The correlation analysis between differential gut microbiota and differential metabolites was conducted using the spearman method. Results: For the first time, the results showed that nine active ingredients and sixteen targets were confirmed to intervene in GU when using GYZXG. Compared with the model group, GYZXG was found to increase the ulcer inhibition rate in the GYZXG-M group (p < 0.05), reduce the levels of IL-6, TNF-α, PP in gastric tissue, and increase the levels of IL-10, IL-4, and EGF. GYZXG could intervene in GU by regulating serum metabolites such as Glycocholic acid, Epinephrine, Ascorbic acid, and Linoleic acid, and by influencing bile secretion, the HIF-1 signaling pathway, and adipocyte catabolism. Additionally, GYZXG could intervene in GU by altering the gut microbiota diversity and modulating the relative abundance of Bacteroidetes, Bacteroides, Verrucomicrobia, Akkermansia, and Ruminococcus. The differential gut microbiota was strongly associated with serum differential metabolites. KEGG enrichment analysis indicated a significant role of the HIF-1 signaling pathway in GYZXG's intervention on GU. The changes in metabolites within metabolic pathways and the alterations in RELA, HIF1A, and EGF mRNA levels in RT-qPCR experiments provide further confirmation of this result. Conclusion: GYZXG can intervene in GU induced by anhydrous ethanol in rats by regulating gut microbiota and metabolic disorders, providing a theoretical basis for its use in GU intervention.

19.
BMC Complement Med Ther ; 24(1): 47, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245694

RESUMO

BACKGROUND: Leguminous Sophora moorcroftiana (SM) is a genuine medicinal material in Tibet. Many research results have reveal the Sophora moorcroftiana alkaloids (SMA), as the main active substance, have a wide range of effects, such as antibacterial, antitumor and antiparasitic effects. However, there are few reports on the inhibition of lung cancer (LC) and its inhibitory mechanism, and the pharmacological mechanism of SMA is still unclear, Therefore, exploring its mechanism of action is of great significance. METHODS: The SMA active components were obtained from the literature database. Whereas the corresponding targets were screened from the PubChem and PharmMapper database, UniProt database were conducted the correction and transformation of UniProt ID on the obtained targets. The GeneCards and OMIM databases identified targets associated with LC. Venny tools obtained the intersection targets of SMA and LC. R language and Cytoscape software constructed the visual of SMA - intersection targets - LC disease network. The intersection targets protein-protein interaction (PPI) network were built by the STRING database. The functions and pathways of the common targets of SMA and LC were enriched by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking And A549 cells vitro experiment were performed to further validate our finding. RESULTS: We obtained six kinds of alkaloids in SM, 635 potential targets for these compounds, and 1,303 genes related to LC. SMA and LC intersection targets was 33, including ALB, CCND1, ESR1, NOTCH1 and AR. GO enrichment indicated that biological process of SMA was mainly involved in the positive regulation of transcription and nitric oxide biosynthetic process, and DNA-templated, etc. Biological functions were mainly involved in transcription factor binding and enzyme binding, etc. Cell components were mainly involved in protein complexes, extracellular exosome, cytoplasm and nuclear chromatin, etc., Which may be associated with its anti-LC effects. KEGG enrichment analysis showed that main pathways involved in the anti-LC effects of SMA, including pathway in cancer, non small-cell lung cancer, p53, PI3K-Akt and FOXO signaling pathways. Molecular docking analyses revealed that the six active compounds had a good binding activity with the main therapeutic targets 2W96, 2CCH and 1O96. Experiments in vitro proved that SMA inhibited the proliferation of LC A549 cells. CONCLUSIONS: Results of the present study, we have successfully revealed the SMA compounds had a multi-target and multi-channel regulatory mechanism in treatment LC, These findings provided a solid theoretical reference of SMA in the clinical treatment of LC.


Assuntos
Alcaloides , Neoplasias Pulmonares , Sophora , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicina Tradicional Tibetana , Fosfatidilinositol 3-Quinases , Alcaloides/farmacologia
20.
Vet Sci ; 10(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36977263

RESUMO

To analyze the intervention mechanism of polysaccharides from charred Angelica sinensis (CASP) on the liver injury caused by Ceftiofur sodium (CS) and lipopolysaccharide (LPS) from the perspective of the intestine. Ninety-four one-day-old laying chickens underwent free feeding and drinking water for three days. Then, fourteen laying chickens were randomly selected as the control group, and sixteen laying chickens were selected as the model group. Sixteen laying chickens in the rest were randomly selected as the intervention group of CASP. Chickens in the intervention group were given CASP by the oral administration (0.25 g/kg/d) for 10 days, the control and model groups were given the same amount of physiological saline. During the 8th and 10th days, laying chickens in the model and CASP intervention group were subcutaneously injected with CS at the neck. In contrast, those in the control group were subcutaneously injected with the same amount of normal saline simultaneously. Except for the control group, the layer chickens in the model and CASP intervention groups were injected with LPS after CS injection on the 10th day of the experiment. In contrast, those in the control group were injected with the same amount of normal saline at the same time. 48 h after the experiment, the liver samples of each group were collected, and the liver injury was analyzed by hematoxylin-eosin (HE) staining and transmission electron microscopy. And the cecum contents of six-layer chickens in each group were collected, and the intervention mechanism of CASP on the liver injury from the perspective of the intestine was analyzed by the 16S rDNA amplicon sequencing technology and the short-chain fatty acids (SCFAs) detection of cecal contents based on Gas Chromatography-Mass Spectrometry (GC-MS), and their association analysis was carried out. The results showed that the structure of chicken liver in the normal control group was normal, while that in the model group was damaged. The structure of chicken liver in the CASP intervention group was similar to the normal control group. The intestinal floras in the model group were maladjusted compared to the normal control group. After the intervention of CASP, the diversity, and richness of chicken intestinal floras changed significantly. It was speculated that the intervention mechanism of CASP on the chicken liver injury might be related to the abundance and proportion of Bacteroidetes and Firmicutes. Compared with the model group, the indexes of ace, chao1, observed species, and PD whole tree of chicken cecum floras in the intervention group of CASP were significantly increased (p < 0.05). The contents of acetic acid, butyric acid, and total SCFAs in the intervention group of CASP were significantly lower than those in the model group (p < 0.05), and the contents of propionic acid and valeric acid in the intervention group of CASP were significantly lower than those in the model group (p < 0.05) and normal control group (p < 0.05). The correlation analysis showed that the changes in the intestinal floras were correlated with the changes in SCFAs in the cecum. It is confirmed that the liver-protecting effect of CASP is indeed related to the changes in the intestinal floras and SCFAs content in the cecum, which provides a basis for screening liver-protecting alternative antibiotics products for poultry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA