Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542992

RESUMO

Iodine, primarily in the form of iodide (I-), is the bioavailable form for the thyroid in the human body. Both deficiency and excess intake of iodide can lead to serious health issues, such as thyroid disease. Selecting iodide ions among anions has been a significant challenge for decades due to interference from other anions. In this study, we designed and synthesized a new pincer-type acridine-triazole fluorescent probe (probe 1) with an acridine ring as a spacer and a triazole as a linking arm attached to two naphthol groups. This probe can selectively recognize iodide ions in a mixed solvent of THF/H2O (v/v, 9/1), changing its color from colorless to light yellow, making it suitable for highly sensitive and selective colorimetric and fluorescent detection in water systems. We also synthesized another molecular tweezer-type acridine-triazole fluorescent probe (probe 2) that exhibits uniform detection characteristics for iodide ions in the acetonitrile system. Interestingly, compared to probe 2, probe 1 can be detected by the naked eye due to its circulation effect, providing a simple method for iodine detection. The detection limit of probe 1 is determined to be 10-8 mol·L-1 by spectrometric titration and isothermal titration calorimetry measurements. The binding stoichiometry between probe 1 and iodide ions is calculated to be 1:1 by these methods, and the binding constant is 2 × 105 mol·L-1.

2.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731524

RESUMO

Using the aldehyde amine condensation procedure and the triphenylamine group as the skeleton structure, the new triphenylamine-aromatic aldehyde-succinylhydrazone probe molecule DHBYMH was created. A newly created acylhydrazone probe was structurally characterized by mass spectrometry (MS), NMR, and infrared spectroscopy (FTIR). Fluorescence and UV spectroscopy were used to examine DHBYMH's sensing capabilities for metal ions. Notably, DHBYMH achieved a detection limit of 1.62 × 10-7 M by demonstrating exceptional selectivity and sensitivity towards Cu2+ ions in an optimum sample solvent system (DMSO/H2O, (v/v = 7/3); pH = 7.0; cysteine (Cys) concentration: 1 × 10-4 M). NMR titration, high-resolution mass spectrometry analysis, and DFT computation were used to clarify the response mechanism. Ultimately, predicated on DHBYMH's reversible identification of Cu2+ ions in the presence of EDTA, a molecular logic gate was successfully designed.

3.
J Sci Food Agric ; 102(14): 6481-6490, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35570337

RESUMO

BACKGROUND: Selenium (Se) is an essential micronutrient for humans and animals, but not for plants. Generally, cereals including wheat and rice are the main source of dietary Se for humans. Although arbuscular mycorrhizal fungi (AMF) are ubiquitous soil microbes and commonly develop symbionts with winter wheat (Triticum aestivum L.), the influence of AMF on accumulation and translocation of Se during developmental cycle of winter wheat is still unclear. RESULTS: Based on a pot trial, the present results indicated that the effects of AMF on grain Se concentration in winter wheat depend on the Se species spiked in the soil and that Rhizophagus intraradices (Ri) significantly enhanced grain Se concentration under selenite treatment. Moreover, inoculation of AMF significantly increased grain Se content under selenite and selenate treatments. The enhanced grain Se content of mycorrhizal wheat could be attributed to (i) apparently increased root growth of mycorrhizal wheat at jointing could absorb more Se for translocating to aerial tissues and consequently result in significantly higher stalk Se content and (ii) enhancing Se translocation from vegetative tissues to grains. The present study showed that AMF significantly (P < 0.05) increased pre-anthesis Se uptake under selenate treatment and post-anthesis Se uptake under selenite treatment. CONCLUSION: The present study indicated the feasibility of inoculation of AMF for increasing grain Se concentration under selenite treatment and enhancing the efficiency of biofortification of Se under selenate treatments. © 2022 Society of Chemical Industry.


Assuntos
Micorrizas , Selênio , Grão Comestível/química , Humanos , Micronutrientes/análise , Raízes de Plantas , Ácido Selênico/análise , Ácido Selenioso/análise , Selênio/análise , Solo/química , Triticum/química
4.
Bull Environ Contam Toxicol ; 108(6): 1147-1152, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35171301

RESUMO

Root exudates can stimulate microbial degradation in rhizosphere, but it is unclear whether the rhizodegradation of polycyclic aromatic hydrocarbons (PAHs) occurs in corn straw-amended soil. Either citric acid or corn straw was added into PAHs-contaminated soil to investigate their effect on the removal of PAHs. Either corn straw (Y) or combined application of corn straw and citric acid (YN100) significantly (p < 0.05) enhanced the removal of soil PAHs by 8.43% and 18.62%, respectively. Both Y and YN100 treatments obviously increased the abundance of PAHs degraders and the potential hosts of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes. Interestingly, the copies of PAH-RHDα Gram-negative bacteria genes under YN100 treatment was significantly (p < 0.05) higher than those under Y treatment. The present results indicated that combined application of corn straw and citric acid could efficiently enhance the removal of PAHs in soil, mainly via increasing the relative abundances of PAH-degrading bacteria and the expression of PAH-RHDα genes in contaminated soil.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Ácido Cítrico , Expressão Gênica , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Zea mays/metabolismo
5.
J Environ Manage ; 294: 112998, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126539

RESUMO

Either biosurfactants or agricultural wastes were frequently used to enhance degradation of PAHs in soil, but there is still not clear whether combined application of biosurfactants and agricultural wastes is more efficient. Rhamnolipid and/or agricultural wastes (mushroom substrate or maize straw) were mixed with PAHs-contaminated soil to explore their performances in the removal of PAHs. The present study showed that rhamnolipid combined with mushroom substrate (MR, 30.36%) or maize straw (YR, 30.76%) significantly enhanced the degradation of soil PAHs compared with single application of mushroom substrate (M, 25.53%) or maize straw (Y, 25.77%) or no addition (19.38%). The addition of agricultural wastes significantly (p < 0.001) enhanced concentration of dissolved organic carbon (DOC) in soil. The combined application obviously improved the bioavailability of PAHs in soils and exhibited synergistic effects on concentration of organic acid-soluble HMW PAHs and the degradation rate of total HMW PAHs. Meanwhile, the combined application significantly (p < 0.01) enhanced the abundance of dominant bacterial and fungal genera being connected with PAHs degradation. The removal rate of PAHs was positively correlated with the dominant genera of bacteria (r = 0.539-0.886, p < 0.05) and fungi (r = 0.526-0.867, p < 0.05) related to PAHs degradation. Overall, the combined application exhibited a better performance in the removal of PAHs in contaminated soil via increasing their bioavailability and changing microbial communities in soil.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Disponibilidade Biológica , Glicolipídeos , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
6.
Ecotoxicol Environ Saf ; 202: 110886, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32585487

RESUMO

A field investigation was conducted to study the dynamic distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in winter wheat in the surrounds of a coal-fired power plant. During March to June 2019, various tissues of winter wheat and the corresponding rhizosphere soil were collected for determination of PAHs. A clear spatial downward trend was found in concentration of Σ15PAHs in rhizosphere soil and wheat grain (194-237 µg kg-1 DM) with the increasing distance from the coal-fired power plant. Moreover, Σ15PAHs concentration in rhizosphere soil (1081 µg kg-1 DM), root (464 µg kg-1 DM) and stem (365 µg kg-1 DM) of winter wheat at regreening stage and leaf (323 µg kg-1 DM) at anthesis stage were significantly (p < 0.001) higher than that (895, 432, 287 and 265 µg kg-1 DM) at maturity stage, respectively. From regreening to maturity stage, root concentration factors (RCF) of 3- and 4-ring PAHs exhibited an increasing trend but the 5-ring PAHs showed an apparently downward trend. However, stem concentration factors (SCF) of 3- and 4-ring PAHs showed a decrease trend while the 5- and 6-ring showed first down and then stable trend. There were positive linear relationship between logKow and logSCF at anthesis (r = 0.681, p < 0.05) and maturity stage (r = 0.751, p < 0.05). Based on linear regression analysis, PAHs in grain mainly came from the transfer of vegetative tissues, and the contribution of PAHs from stem and leaf to grain was higher than that from root. In addition, the present study also found that the physicochemical properties of PAHs play a crucial role in transfer of PAHs from root to vegetative tissues and then to grain. The present research provided more comprehensive information on the fate of PAHs in winter wheat and the safety of the agricultural products.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Triticum/química , Agricultura , Grão Comestível/química , Desenvolvimento Vegetal , Folhas de Planta/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Estações do Ano , Solo/química , Poluentes do Solo/metabolismo , Triticum/metabolismo
7.
Bull Environ Contam Toxicol ; 105(3): 446-452, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32894322

RESUMO

Increasing contamination of urban soil by persistent organic pollutants is a major environmental issue. The purpose of the present study was to investigate the distribution, source and human health risk of polycyclic aromatic hydrocarbons (PAHs) in different functional areas in Zhengzhou City, China. Total 130 soil samples were collected from surface layer (0-10 cm) in urban road, overpass, residential area and park in the city during January 2019. Concentrations of ∑PAH16 in the urban soil ranged from 49.90 to 11,565 µg kg-1 and seven carcinogenic PAHs accounted for 69% of the total PAHs. The mean concentrations of PAHs decreased in the following order: urban road > overpass > residential area > park. Analysis based on diagnostic rate demonstrated that PAHs mainly originated from pyrolysis sources including traffic emissions and combustion of coal and biomass. Health risk assessment indicated that PAHs in urban road in the city have potential carcinogenic risks to residents. The present study suggested that the control of urban PAHs pollution in Zhengzhou City should be strengthened.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Biomassa , Carcinógenos/análise , China , Cidades , Carvão Mineral/análise , Poluição Ambiental/análise , Humanos , Medição de Risco , Solo
8.
Anal Chem ; 91(8): 5261-5269, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30868876

RESUMO

Developing solid state near-IR (NIR) emitters and simultaneously discriminative detection of trace water in organic solvents has long been a significant challenge. In this work, a novel diketopyrrolopyrrole-based luminogen (DPP1) with excited state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) characteristics has been designed and synthesized. Its amorphous and crystal solids show red and NIR-emissive fluorescence at 625 and 675 nm, respectively. When DPP1 reacts with fluoride anion, the resulting system (DPP1·F) can discriminatively detect the water content in aprotic solvents with colorimetric and fluorescent dual modes. Distinct fluorescent responses of "turn-on", "ratiometric turn-off", and "ratiometric turn-on" and low limits of detection of 0.0064, 0.042, and 0. The water-induced sensitive and fast change in THF was applied to the determination of water in foodstuffs in practical solid state indicator paper strips.

9.
Ecotoxicol Environ Saf ; 186: 109745, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31606644

RESUMO

In order to provide a viable option for remediation of PAHs-contaminated soils, a greenhouse experiment was conducted to assess the effect of corn straw amendment (1%, 2%, 4% or 6%, w/w) on dissipation of aged polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Backpropagation artificial neural network (BP-ANN) was applied to model the relationships between soil properties and PAHs concentration in soils. The removal rate of PAHs, enzyme activity (catalase and dehydrogenase), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in soils were investigated to evaluate the dissipation of PAHs under different ratio of corn straw amendment. The present study showed that corn straw amendment apparently accelerated the dissipation of PAHs after incubation of 112 days, especially under 4% and 6% treatments. Compared with non-amended soil, corn straw amendment significantly (p < 0.05) increased the removal rate of low molecular weight (LMW) PAHs and significantly (p < 0.05) enhanced the dissipation of high molecular weight (HMW) PAHs only under 6% treatment. Moreover, corn straw amendment increased activities of catalase and dehydrogenase, concentrations of DOC and MBC in soils, which are beneficial to the degradation of PAHs in soils. The performance of the BP-ANN model was assessed through the root mean square error (RMSE) and determination coefficient (R2). The results indicated that BP-ANN model could provide satisfactory prediction of PAHs concentration in soils during incubation period at R2 and RMSE values of 0.948, 187.4 µg kg-1, respectively. The results indicated that high amendment of corn straw was a potential option for remediation of PAHs-contaminated soils and that the BP-ANN model could successfully provide prompt prediction of PAHs concentration in soils.


Assuntos
Redes Neurais de Computação , Estruturas Vegetais , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo/química , Zea mays , Biodegradação Ambiental , Biomassa , Carbono/análise , Catalase/metabolismo , Peso Molecular , Oxirredutases/metabolismo , Reprodutibilidade dos Testes , Microbiologia do Solo
10.
Ecotoxicol Environ Saf ; 183: 109567, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442802

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are universal organic pollutants in the agro ecosystems in China, therefore, it is important to understand the uptake and accumulation of PAHs in crops growing on PAHs contaminated soils for human health risk assessments. Water management is a common practice to maintain high grain yields during wheat production. However, the effects of soil water content on the accumulation and translocation of PAHs in wheat are still not clear. The main objectives of the present study were to investigate the effects of soil water content on the accumulation of three selected PAHs (Σ3PAHs, phenanthrene, anthracene and pyrene) in wheat during whole plant growth stage and on translocation or remobilization of Σ3PAHs from vegetative tissues to wheat grains. Winter wheat (Triticum aestivum cv. Xiaoyan22) were grown on Σ3PAHs spiked soils maintaining 80%, 60% or 40% water-holding capacity during the whole plant growth stage. Plant samplings were performed at jointing, anthesis or maturity stage, respectively. The present study showed that grain yield and biomass of the crop increased with soil water content increasing. Transpiration rate of wheat leaf under 80% and 60% water-holding capacity treatments was significantly (p < 0.05) higher than that under 40% water-holding capacity treatment at both anthesis and filling stage. Soil water content and plant growth stage had significant (p < 0.0001) effects on concentrations of phenanthrene, anthracene and pyrene in winter wheat. When exposed to 0, 15, 60, and 150 mg kg-1 Σ3PAHs in soils, Σ3PAHs concentrations in the grains under 60% water-holding capacity treatment were 46.6%, 69.9%, 89.5% and 81.7% of those under 80% water-holding capacity treatment, respectively. The highest concentrations of Σ3PAHs in the crop were recorded at anthesis stage. The distribution of PAHs in different tissues of wheat varied among different soil water treatments and plant growth stages. The present study indicated that optimizing soil water content during winter wheat production could apparently reduce concentrations of Σ3PAHs in grains via influence root uptake of Σ3PAHs and translocation of Σ3PAHs from stem or leaf into grain, suggesting the potential of water management to cope with PAHs contamination in crops growing on PAHs contaminated soils.


Assuntos
Antracenos/análise , Fenantrenos/análise , Pirenos/análise , Solo/química , Triticum/química , Água/análise , Antracenos/metabolismo , Transporte Biológico , Biomassa , China , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Fenantrenos/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Pirenos/metabolismo , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Água/metabolismo
11.
Ecotoxicol Environ Saf ; 171: 813-822, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30660975

RESUMO

Investigating the occurrence of disinfection by-products (DBPs) and identify the related influencing factors in drinking water is essentially important to control DBPs risk. In this study, 64 tap water samples were collected from 8 counties (or county level cities) in Jinhua Region of Zhejiang Province, China. Results showed that the median (range) of trihalomethane (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HKs) and halonitromethanes (HNMs) were 23.2 (9.1-40.9), 15.3 (5.8-38.6), 2.2 (0.7-7.6), 2.1 (0.2-6.4) and 0.7 (0.2-2.9) µg/L, respectively. HAAs, HANs, HKs and HNMs levels were generally higher in summer than in winter or spring, while for THMs in most counties, higher levels occurred in winter than in summer or spring. Spatially, Yongkang, Yiwu and Dongyang had higher DBPs levels than Pujiang, Pan'an, Lanxi, Wuyi and Jinhua, which was generally consistent with their economy development (GDP). Correlation analysis showed that DBPs occurrence in tap water was significantly related with physicochemical parameters. Principle component analysis further suggested that organic matter (DOC and UVA254) are the major factors influencing the occurrence of THMs, HAAs, HANs and HKs in tap water, while for HNMs, both the organic (DOC and UVA254) and inorganic factors (e.g. Temp, NO2--N, pH, Br- and NH4+-N) played important role in its formation.


Assuntos
Desinfetantes/química , Água Potável/química , Poluentes Químicos da Água/química , Acetatos/análise , Acetonitrilas/análise , China , Hidrocarbonetos Halogenados/análise , Cetonas/análise , Estações do Ano , Trialometanos/análise
12.
Ecotoxicol Environ Saf ; 164: 118-124, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30099172

RESUMO

Heavy metal pollution of agricultural soils is an important issue around the world. To understand the overall pollution process, accurate determination of every input and output pathway of heavy metals to and from soils is essential. Hence, input and output inventory, a quantitative analysis method of heavy metals balance in agricultural soils, has been widely used. However, due to differences in geography, climate, socioeconomic factors, industrial and agricultural production, substantial variation exists among existing input and output inventories for different countries and regions. In this study, we systematically analyzed these differences and the findings will improve the compilation of inventories worldwide.


Assuntos
Agricultura , Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , China , Poluição Ambiental , Solo/química
13.
J Environ Sci (China) ; 63: 87-95, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29406120

RESUMO

Household air pollution is considered to be among the top environmental risks in China. To examine the performance of improved stoves for reduction of indoor particulate matter (PM) emission and exposure in rural households, individual inhalation exposure to size-resolved PM was investigated using personal portable samplers carried by residents using wood gasifier stoves or improved coal stoves in a rural county in Central China. Concentrations of PM with different sizes in stationary indoor and outdoor air were also monitored at paired sites. The stationary concentrations of size-resolved PM in indoor air were greater than those in outdoor air, especially finer particles PM0.25. The daily averaged exposure concentrations of PM0.25, PM1.0, PM2.5 and total suspended particle for all the surveyed residents were 74.4±41.1, 159.3±74.3, 176.7±78.1 and 217.9±78.1µg/m3, respectively. Even using the improved stoves, the individual exposure to indoor PM far exceeded the air quality guideline by WHO at 25µg/m3. Submicron particles PM1.0 were the dominant PM fraction for personal exposure and indoor and outdoor air. Personal exposure exhibited a closer correlation with indoor PM concentrations than that for outdoor concentrations. Both inhalation exposure and indoor air PM concentrations in the rural households with gasifier firewood stoves were evidently lower than the reported results using traditional firewood stoves. However, local governments in the studied rural areas should exercise caution when widely and hastily promoting gasifier firewood stoves in place of improved coal stoves, due to the higher PM levels in indoor and outdoor air and personal inhaled exposure.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricos , Exposição por Inalação/estatística & dados numéricos , China , Culinária/métodos , Culinária/estatística & dados numéricos , Características da Família , Humanos , Material Particulado , População Rural/estatística & dados numéricos
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(1): 157-62, 2016 Jan.
Artigo em Zh | MEDLINE | ID: mdl-27228760

RESUMO

A disubstituted phthalimide-based thiacalix[4] arene derivative (probe s1) was synthesized from cone 1, 3-thiacalix[4] arene and hydroxyethyl phthalimide, with benzyl appended the lower edge of thiacalix[4]-arene by triazole ring in the 2,4 position. The relative fluorescence quantum yield of probe s1 is 0.43 in CH3CN solvent. The strong fluorescence emission of probe s1 at 390 nm wavelength can be selectively quenched by Fe3+ in DMF/H2O solution. Similarly, the presence of I- also induced a significant fluorescence quenching of probe s1 at 310 nm wavelength in CH3CN solution. Spectral titration and isothermal titration calorimetry were showed that probe s1 with Fe3+ or I- both form 1 : 1 complexes, the binding constants up to 10(5) and coordinate process were spontaneous. The linear ranges of fluorescence detect Fe3+ or I- were 1.0 x 10(-7) - 1.6 x 10(-4) mol x L(-1) and 1.0 x 10(-7) - 8.5 x 10(-5) mol x L(-1), detection limits were up to 2.30 x 10(-8) mol x L(-1) and 1.17 x 10(-8) mol x L(-1), respectively. Meanwhile, take advantage of identification and coordination action, a logic circuit constructed at the molecular level by controlling two input signals of Fe3+ and F-, which causing probe s1 cycling of fluorescence emission or quenching. IR spectrum speculated that the nitrogen atoms of triazole groups are involved in the complexation with Fe3+, while the hydrogen atoms of triazole groups were complexed with I- by hydrogen bonding.

15.
J Fluoresc ; 25(5): 1183-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169376

RESUMO

N,N'-bis(4-methoxysalicylide)benzene-1,4-diamine (S1) was synthesized from 4-methoxysalicylaldehyde and p-phenylenediamine and it was found to exhibit interesting aggregation-induced emission enhancement (AIEE) characteristics. In aprotic solvent, S1 displayed very weak fluorescence, whilst strong emission was observed when in protic solvent. The morphology characteristics and luminescent properties of S1 were determined from the fluorescence and UV absorption spectra, SEM, fluorescence microscope and grading analysis. Analysis of the single crystal diffraction data infers that the intramolecular hydrogen bonding constitutes to a coplanar structure and orderly packing in aggregated state, which in turn hinders intramolecular C-N single bond rotation. Given that the three benzene rings formed a large plane conjugated structure, the fluorescence emission was significantly enhanced. The absolute fluorescence quantum yield and fluorescence lifetime also showed that radiation transition was effectively enhanced in the aggregated state. Moreover, the AIEE behavior of S1 suggests there is a potential application in the fluorescence sensing of some volatile organic solvents.

16.
Int J Phytoremediation ; 17(9): 841-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083716

RESUMO

An arsenic hyperaccumulator, Pteris vittata L., is common in nature and could occur either on As-contaminated soils or on uncontaminated soils. However, it is not clear whether phosphate transporter play similar roles in As uptake and translocation in nonmetallicolous and metallicolous populations of P. vittata. Five populations were used to investigate effects of phosphate on arsenate uptake and translocation in the plants growing in 1.2 L 20% modified Hoagland's nutrient solution containing either 100 µM phosphate or no phosphate and 10 µM arsenate for 1, 2, 6, 12, 24 h, respectively. The results showed that the nonmetallicolous populations accumulated apparently more As in their fronds and roots than the metallicolous populations at both P supply levels. Phosphate significantly (P < 0.01) decreased frond and root concentrations of As during short time solution culture. In addition, the effects of phosphate on As translocation in P. vittata varied among different time-points during time-course hydroponics (1-24 h). The present results indicated that the inhibitory effect of phosphate on arsenate uptake was larger in the three nonmetallicolous populations than those in the two metallicolous populations of P. vittata.


Assuntos
Arseniatos/metabolismo , Fosfatos/análise , Pteris/metabolismo , Poluentes do Solo/metabolismo , Arsênio/metabolismo , Biodegradação Ambiental , Hidroponia , Fósforo/análise , Pteris/genética
17.
Sci Total Environ ; 912: 169619, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38157912

RESUMO

Selenium (Se) deficiency in rice will result in a Se hidden hunger threat to the general public's human health, particularly in areas where rice consumption is high. Nevertheless, the impact scope and coping strategies have not been given sufficient focus on a worldwide scale. In order to evaluate the impacts, causes and biofortification strategies of Se-deficient rice, this study collected data from the publications on three themes: market survey, field sampling and controlled experiments. According to the market survey, global rice Se concentrations were 0.079 mg/kg on mean and 0.062 mg/kg on median. East Asia has a human Se intake gap due to the region's high rice consumption and the lowest rice Se concentration in markets globally. Total Se concentrations in East Asian paddy soils were found to be adequate based on the field sampling. However, over 70 % of East Asian paddy fields were inadequate to yield rice that met the global mean for rice Se concentration. The Se-deficient rice was probably caused by widespread low Se bioavailability in East Asian paddy fields. There were two important factors influencing rice Se enrichment including root Se uptake and iron oxide in soils. Concentrating on these processes is beneficial to rice Se biofortification. Since Se is adequate in the paddy soils of East Asia. Rather of adding Se exogenously, activating the native Se in paddy soil is probably a more appropriate strategy for rice Se biofortification in East Asia. Meta-analysis revealed water management had the greatest impact on rice Se biofortification. The risks and solutions for rice Se deficiency were discussed in our farmland-to-table survey, which will be a valuable information in addressing the global challenge of Se hidden hunger. This study also provided new perspectives and their justifications, critically analyzing both present and future strategies to address Se hidden hunger.


Assuntos
Desnutrição , Oryza , Selênio , Humanos , Selênio/análise , Biofortificação , Solo
18.
Ecotoxicol Environ Saf ; 91: 18-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23399100

RESUMO

Five random vegetable farms were selected to investigate the bioaccumulation risk of heavy metals (HMs) by different type of vegetables around the Pearl River Delta (PRD), China. The concentration order of four major HMs in the surface soil samples was Cd

Assuntos
Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Verduras/química , Verduras/metabolismo , Agricultura , China , Frutas/química , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Rios , Solo/química , Poluentes do Solo/análise , Especificidade da Espécie
19.
Environ Pollut ; 324: 121367, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858100

RESUMO

Different types of carbon substrates were widely used in soil remediation. However, differences of their impacts and related mechanisms on degradation of polycyclic aromatic hydrocarbons (PAHs) and microbial community structures in contaminated soil still remain unclear. Here, we investigated the effects of corn straw (S), glucose (G), straw combined with glucose (SG), and sodium azide (N, as an abiotic control) on PAHs fractions and bacterial communities in soil. After 70 days' microcosm experiments, total PAHs concentrations were significantly reduced by 30.9%, 19.5% and 44.6% under S, G and SG treatments. Water soluble, acid soluble and residual PAHs under all treatments were significantly decreased after 70 days of incubation, while organically bound PAHs were increased by 11.4%, 22.7% and 36.1% under G, S and SG treatments. Additionally, straw and glucose application increased relative abundance related PAHs-degrading bacteria and the copy numbers of gram-negative (PAHs-RHDα GN) and gram-positive genes (PAHs-RHDα GP) in the contaminated soil. Redundancy analysis (RDA) and Random Forest (RF) indicated that PAHs fractions are crucial factors for biodegradation of PAHs in PAHs-contaminated soils amended with carbon substrates. These suggested that carbon substrates contributed to PAHs conversion from residual PAHs (nonlabile fractions) to organically bound PAHs and thus increased the potential for PAHs conversion to water-soluble and organic acid-soluble PAHs, which were more easy to be utilized by soil microorganisms. This study revealed the new insights of different carbon substrates on degradation and dynamic changes of PAHs fractions and the better potential of combined application of straw and glucose in enhancing degradation of PAHs in PAHs-contaminated soils.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Carbono/metabolismo , Poluentes do Solo/análise , Microbiologia do Solo , Biodegradação Ambiental , Bactérias/metabolismo , Solo/química
20.
Sci Total Environ ; 903: 166118, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574053

RESUMO

Enhanced rock weathering (ERW) in farmland is an emerging carbon dioxide removal technology with crushed silicate rocks for soil improvement. However, due to climatic variability and field data limitations, uncertainties remain regarding the influence of ERW on food security and soil carbon pools in temperate regions. This study focused to evaluate the crop productivity and carbon sequestration potential of farmland ERW in China by conducting field monitoring in different humid regions and ERW performance model. Additionally, the contribution of climate, soil, and management factors to ERW-mediated yield and carbon sequestration changes was explored using random forest and correlation networks. Field monitoring indicated that farmland ERW significantly improved crop yield in humid region (13.5 ± 5.2 %), along with notable improvements in soil pH and available nutrients. Precipitation (10.4-16.7 %) and soil pH (9.7-16.8 %) had the highest contribution on ERW mediated yield and carbon sequestration changes, but the contribution of management factors (24-26.2 %), especially N input (2.7-7.0 %), should not be disregarded. The model evaluation demonstrated that the carbon sequestration rate of farmland ERW in China can reach 0.28-0.40 Gt yr-1, thereby presenting an opportunity to expand and accelerate the nationally determined contributions of China. The mean sequestration cost of farmland ERW was 633 ± 161 CNY ¥ t-CO2-1, which was an attractive sequestration price considering the positive benefits of rock powder on soil pH and nutrients. Deploying ERW in acidified and mineral nutrient deficient regions was able to serve as an alternative to lime and part chemical fertilizers to improve yield and maximize agricultural sustainability and resource co-benefits. Farmland ERW also has the potential to resource silicate waste to assist traditional, difficult-to-decarbonize industries to reduce carbon emissions. As a result, a comprehensive assessment of existing artificial silicate waste materials could further expand the application of farmland ERW.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA