Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000532

RESUMO

We hypothesized and investigated whether prenatal exposure to preeclampsia (PE) would simultaneously affect perinatal cardiovascular features and angiotensin system expressions. This prospective study was composed of mother-neonate dyads with (n = 49) and without maternal preeclampsia (n = 48) in a single tertiary medical center. The neonates exposed to PE had significantly larger relative sizes for the left and right coronary arteries and a higher cord plasma level of aminopeptidase-N, which positively correlated with the maternal diastolic blood pressures and determined the relative sizes of the left and right coronary arteries, whereas the encoding aminopeptidase-N (ANPEP) mRNA level in the PE cord blood leukocytes was significantly decreased, positively correlated with the neonatal systolic blood pressures (SBPs), and negatively correlated with the cord plasma-induced endothelial vascular cell adhesion molecule-1 mRNA levels. The PE cord plasma significantly induced higher endothelial mRNA levels of angiotensin II type 1 receptor (AT1R) and AT4R, whereas in the umbilical arteries, the protein expressions of AT2R and AT4R were significantly decreased in the PE group. The endothelial AT1R mRNA level positively determined the maternal SBPs, and the AT4R mRNA level positively determined the neonatal chamber size and cardiac output. In conclusion, PE may influence perinatal angiotensin system and cardiovascular manifestations of neonates across placentae. Intriguing correlations between these two warrant further mechanistic investigation.


Assuntos
Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Adulto , Recém-Nascido , Sangue Fetal/metabolismo , Pressão Sanguínea , Estudos Prospectivos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Cardiovascular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
J Formos Med Assoc ; 122(3): 258-266, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36207218

RESUMO

BACKGROUND/PURPOSE: Metabolic syndrome (MetS) and overactive bladder might share common pathophysiologies. Environmental fructose exposure during pre- and postnatal periods of rats may program MetS-associated bladder overactivity. We explored the dysregulated insulin signalling at bladder mucosa, as a common mechanism, in facilitating bladder overactivity in rats with MetS induced by maternal and post-weaning fructose diet. METHODS: Male offspring of Sprague-Dawley rats were subject into 4 groups by maternal and post-weaning diets (i.e., Control/Control, Fructose/Control, Control/Fructose and Fructose/Fructose by diets). Micturition behavior was evaluated. Acidic ATP solution was used to elicit cystometric reflex along with insulin counteraction. Concentration-response curves to insulin were plotted. The canonical signalling pathway of insulin was evaluated in the bladder mucosal using Western blotting. Levels of detrusor cGMP and urinary NO2 plus NO3 were measured. RESULTS: Male offspring with any fructose exposure presents traits of MetS and bladder overactivity. We observed all fructose exposure groups have the poor urodynamic response to insulin during ATP solution stimulation and poor insulin-activated detrusor relaxation in organ bath study. Compared to controls, the Control/Fructose and Fructose/Fructose groups showed the increased phosphorylation levels of IRS1 (Ser307) and IRS2 (Ser731); thus, suppressed the downstream effectors and urinary NOx/detrusor cGMP levels. The Fructose/Control group showed the compensatory increase of phospho-AKT (Ser473) and phospho-eNOS/eNOS levels, but decreased in eNOS, phospho-eNOS, urinary NOx, and detrusor cGMP levels. CONCLUSION: Our results show dysregulated insulin signalling at bladder mucosa should be a common mechanism of MetS-associated bladder overactivity programmed by pre-and postnatal fructose diet.


Assuntos
Síndrome Metabólica , Bexiga Urinária Hiperativa , Ratos , Masculino , Animais , Bexiga Urinária , Insulina/efeitos adversos , Frutose/efeitos adversos , Frutose/metabolismo , Desmame , Ratos Sprague-Dawley , Mucosa/metabolismo , Trifosfato de Adenosina/efeitos adversos , Trifosfato de Adenosina/metabolismo
3.
Pediatr Res ; 92(5): 1309-1315, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35121850

RESUMO

BACKGROUND: Catecholamine-storm is considered the major cause of enterovirus 71-associated cardiopulmonary death. To elucidate the effect of milrinone on cardiac mitochondria and death, a rat model of catecholamine-induced heart failure was investigated. METHODS: Young male Spray-Dawley rats received a continuous intravenous infusion of norepinephrine then followed by co-treatment with and without milrinone or esmolol. Vital signs were monitored and echocardiography was performed at indicated time points. At the end of experiments, hearts were extracted to study mitochondrial function, biogenesis, and DNA copy numbers. RESULTS: Hypernorepinephrinemia induced persistent tachycardia, hypertension, and high mortality and significantly impaired the activities of the electron transport chain and suppressed mitochondrial DNA copy number, mitochondrial transcription factor A and peroxisome proliferator-activated receptor-gamma coactivator 1-α. Norepinephrine-induced hypertension could be significantly suppressed by milrinone and esmolol. Milrinone improved but esmolol deteriorated the survival rate. The left ventricle was significantly enlarged shortly after norepinephrine infusion but later gradually reduced in size by milrinone. The impairment and suppression of mitochondrial function could be significantly reversed by milrinone but not by esmolol. CONCLUSIONS: Milrinone may protect the heart via maintaining mitochondrial function from hypernorepinephrinemia. This study warrants the importance of milrinone and the preservation of mitochondrial function in the treatment of catecholamine-induced death. IMPACT: Milrinone may protect the heart from hypernorepinephrinemia-induced death via maintaining myocardial mitochondrial activity, function, and copy number. Maintenance of cardiac mitochondrial function may be a potential therapeutic strategy in such catecholamine-induced heart failure.


Assuntos
Insuficiência Cardíaca , Hipertensão , Animais , Masculino , Ratos , Milrinona/farmacologia , Mitocôndrias Cardíacas , Catecolaminas , Hemodinâmica , Insuficiência Cardíaca/tratamento farmacológico , Norepinefrina , Cardiotônicos/farmacologia
4.
Environ Toxicol ; 37(11): 2728-2742, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36214339

RESUMO

Fructose overconsumption promotes tumor progression. Neuroblastoma is a common extracranial tumor with about 50% 5-year survival rate in high-risk children. The anti-tumor effect of Tribulus terrestris might bring new hope to neuroblastoma therapy. However, whether fructose disturbs the therapeutic effect of T. terrestris is currently unknown. In this study, the mouse neuroblastoma cell line, Neuro 2a (N2a) cells, was used to investigate the therapeutic effects of T. terrestris extract at various dosages (0.01, 1, 100 ng/ml) in regular EMEM medium or extra added fructose (20 mM) for 24 h. 100 ng/ml T. terrestris treatment significantly reduced the cell viability, whereas the cell viabilities were enhanced at the dosages of 0.01 or 1 ng/ml T. terrestris in the fructose milieu instead. The inhibition effect of T. terrestris on N2a migration was blunted in the fructose milieu. Moreover, T. terrestris effectively suppressed mitochondrial functions, including oxygen consumption rates, the activities of electron transport enzymes, the expressions of mitochondrial respiratory enzymes, and mitochondrial membrane potential. These suppressions were reversed in the fructose group. In addition, the T. terrestris-suppressed mitofusin and the T. terrestris-enhance mitochondrial fission 1 protein were maintained at basal levels in the fructose milieu. Together, these results demonstrated that T. terrestris extract effectively suppressed the survival and migration of neuroblastoma via inhibiting mitochondrial oxidative phosphorylation and disturbing mitochondrial dynamics. Whereas, the fructose milieu blunted the therapeutic effect of T. terrestris, particularly, when the dosage is reduced.


Assuntos
Frutose , Neuroblastoma , Animais , Linhagem Celular , Frutose/farmacologia , Camundongos , Mitocôndrias , Neuroblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Tribulus
5.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887270

RESUMO

Emerging evidence supports that hypertension can be programmed or reprogrammed by maternal nutrition. Maternal exposures during pregnancy, such as maternal nutrition or antibiotic use, could alter the offspring's gut microbiota. Short-chain fatty acids (SCFAs) are the major gut microbiota-derived metabolites. Acetate, the most dominant SCFA, has shown its antihypertensive effect. Limited information exists regarding whether maternal acetate supplementation can prevent maternal minocycline-induced hypertension in adult offspring. We exposed pregnant Sprague Dawley rats to normal diet (ND), minocycline (MI, 50 mg/kg/day), magnesium acetate (AC, 200 mmol/L in drinking water), and MI + AC from gestation to lactation period. At 12 weeks of age, four groups (n = 8/group) of male progeny were sacrificed. Maternal acetate supplementation protected adult offspring against minocycline-induced hypertension. Minocycline administration reduced plasma acetic acid level, which maternal acetate supplementation prevented. Additionally, acetate supplementation increased the protein level of SCFA receptor G protein-coupled receptor 41 in the offspring kidneys. Further, minocycline administration and acetate supplementation significantly altered gut microbiota composition. Maternal acetate supplementation protected minocycline-induced hypertension accompanying by the increases in genera Roseburia, Bifidobacterium, and Coprococcus. In sum, our results cast new light on targeting gut microbial metabolites as early interventions to prevent the development of hypertension, which could help alleviate the global burden of hypertension.


Assuntos
Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Acetatos/farmacologia , Animais , Pressão Sanguínea , Suplementos Nutricionais , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Lactação , Masculino , Exposição Materna/efeitos adversos , Minociclina/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Ratos , Ratos Sprague-Dawley
6.
Am J Physiol Endocrinol Metab ; 320(6): E1173-E1182, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969706

RESUMO

Retinopathy is a leading cause of blindness, and there is currently no cure. Earlier identification of the progression of retinopathy could provide a better chance for intervention. Diet has profound effects on retinal function. A maternal high-fructose diet (HFD) triggers diseases in multiple organs. However, whether maternal HFD impairs retinal function in adult offspring is currently unknown. By using the rodent model of maternal HFD during pregnancy and lactation, our data indicated a reduced b-wave of electroretinography (ERG) in HFD female offspring at 3 mo of age compared with age-matched offspring of dams fed regular chow (ND). Immunofluorescence and Western blot analyses indicated that the distributions and expressions of synaptophysin, postsynaptic density protein 95 (PSD95), and phospho(p)-Ca2+/calmodulin-stimulated protein kinase IIα (CaMKIIα) were significantly suppressed in the HFD group. Furthermore, the ATP content and the mitochondrial respiratory protein, Mt CPX 4-2, were decreased. Moreover, the expressions of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and mitochondrial transcription factor A (TFAM) in the retina of the HFD group were downregulated. Treatment with coenzyme Q10 (Q10), a key mediator of the electron transport chain, effectively reversed these abovementioned dysfunctions. Together, these results suggested that maternal HFD impaired retinal function in adult female offspring. The mechanism underlying early-onset retinopathy may involve the reduction in the capacity of mitochondrial energy production and the suppression of synaptic plasticity. Most importantly, mitochondria could be a feasible target to reprogram maternal HFD-damaged retinal function.NEW & NOTEWORTHY In this study, we provide novel evidence that maternal high-fructose diet during gestation and lactation could induce early-onset retinopathy in adult female offspring. Of note, the insufficient energy content, downregulated mitochondrial respiratory complex 4-2, and impaired mitochondrial biogenesis might contribute to the decrease of synaptic plasticity resulting in retinal function suppression. Oral application with coenzyme Q10 for 4 wk could at least partially reverse the aforementioned molecular events and retinal function.


Assuntos
Frutose/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Doenças Retinianas/induzido quimicamente , Fatores Etários , Animais , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Carboidratos da Dieta/farmacologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Frutose/farmacologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias/fisiologia , Biogênese de Organelas , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Sprague-Dawley , Doenças Retinianas/fisiopatologia
7.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281226

RESUMO

Patients with Rett syndrome (RTT) show severe difficulties with communication, social withdrawl, and learning. Music-based interventions improve social interaction, communication skills, eye contact, and physical skills and reduce seizure frequency in patients with RTT. This study aimed to investigate the mechanism by which music-based interventions compromise sociability impairments in mecp2 null/y mice as an experimental RTT model. Male mecp2 null/y mice and wild-type mice (24 days old) were randomly divided into control, noise, and music-based intervention groups. Mice were exposed to music or noise for 6 h/day for 3 consecutive weeks. Behavioral patterns, including anxiety, spontaneous exploration, and sociability, were characterized using open-field and three-chamber tests. BDNF, TrkB receptor motif, and FNDC5 expression in the prefrontal cortex (PFC), hippocampus, basal ganglia, and amygdala were probed using RT-PCR or immunoblotting. mecp2 null/y mice showed less locomotion in an open field than wild-type mice. The social novelty rather than the sociability of these animals increased following a music-based intervention, suggesting that music influenced the mecp2-deletion-induced social interaction repression rather than motor deficit. Mechanically, the loss of BDNF signaling in the prefrontal cortex and hippocampal regions, but not in the basal ganglia and amygdala, was compromised following the music-based intervention in mecp2 null/y mice, whereas TrkB signaling was not significantly changed in either region. FNDC5 expression in the prefrontal cortex region in mecp2 null/y mice also increased following the music-based intervention. Collective evidence reveals that music-based interventions improve mecp2-loss-induced social dysfunction. BDNF and FNDC5 signaling in the prefrontal cortex region mediates the music-based-intervention promotion of social interactions. This study gives new insight into the mechanisms underlying the improvement of social behaviors in mice suffering from experimental Rett syndrome following a music-based intervention.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Musicoterapia , Córtex Pré-Frontal/metabolismo , Receptor trkB/metabolismo , Síndrome de Rett/terapia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Síndrome de Rett/metabolismo , Síndrome de Rett/psicologia , Comportamento Social
8.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800916

RESUMO

Gut microbiota-derived metabolites, in particular short chain fatty acids (SCFAs) and their receptors, are linked to hypertension. Fructose and antibiotics are commonly used worldwide, and they have a negative impact on the gut microbiota. Our previous study revealed that maternal high-fructose (HF) diet-induced hypertension in adult offspring is relevant to altered gut microbiome and its metabolites. We, therefore, intended to examine whether minocycline administration during pregnancy and lactation may further affect blood pressure (BP) programmed by maternal HF intake via mediating gut microbiota and SCFAs. Pregnant Sprague-Dawley rats received a normal diet or diet containing 60% fructose throughout pregnancy and lactation periods. Additionally, pregnant dams received minocycline (50 mg/kg/day) via oral gavage or a vehicle during pregnancy and lactation periods. Four groups of male offspring were studied (n = 8 per group): normal diet (ND), high-fructose diet (HF), normal diet + minocycline (NDM), and HF + minocycline (HFM). Male offspring were killed at 12 weeks of age. We observed that the HF diet and minocycline administration, both individually and together, causes the elevation of BP in adult male offspring, while there is no synergistic effect between them. Four groups displayed distinct enterotypes. Minocycline treatment leads to an increase in the F/B ratio, but decreased abundance of genera Lactobacillus, Ruminococcus, and Odoribacter. Additionally, minocycline treatment decreases plasma acetic acid and butyric acid levels. Hypertension programmed by maternal HF diet plus minocycline exposure is related to the increased expression of several SCFA receptors. Moreover, minocycline- and HF-induced hypertension, individually or together, is associated with the aberrant activation of the renin-angiotensin system (RAS). Conclusively, our results provide a new insight into the support of gut microbiota and its metabolite SCAFs in the developmental programming of hypertension and cast new light on the role of RAS in this process, which will help prevent hypertension programmed by maternal high-fructose and antibiotic exposure.


Assuntos
Antibacterianos/toxicidade , Frutose/toxicidade , Microbioma Gastrointestinal/fisiologia , Hipertensão/microbiologia , Minociclina/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Antibacterianos/administração & dosagem , Ácidos Graxos Voláteis/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/metabolismo , Hipertensão/etiologia , Rim/efeitos dos fármacos , Rim/metabolismo , Lactação , Masculino , Minociclina/administração & dosagem , Óxido Nítrico/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Sistema Renina-Angiotensina/fisiologia
9.
Mov Disord ; 35(9): 1662-1667, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32374915

RESUMO

BACKGROUND: Alexander disease (AxD) is an autosomal-dominant leukodystrophy caused by heterozygous mutations in the glial fibrillary acidic protein (GFAP) gene. OBJECTIVES: The objective of this report is to characterize the clinical phenotype and identify the genetic mutation associated with adult-onset AxD. METHODS: A man presented with progressive unsteadiness since age 16. Magnetic resonance imaging findings revealed characteristic features of AxD. The GFAP gene was screened, and a candidate variant was functionally tested to evaluate causality. RESULTS: A homozygous c.197G > A (p.Arg66Gln) mutation was found in the proband, and his asymptomatic parents were heterozygous for the same mutation. This mutation affected GFAP solubility and promoted filament aggregation. The presence of the wild-type protein rescued mutational effects, consistent with the recessive nature of this mutation. CONCLUSIONS: This study is the first report of AxD caused by a homozygous mutation in GFAP. The clinical implication is while examining patients with characteristic features on suspicion of AxD, GFAP screening is recommended even without a supportive family history. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alexander , Adolescente , Adulto , Doença de Alexander/diagnóstico por imagem , Doença de Alexander/genética , Proteína Glial Fibrilar Ácida/genética , Homozigoto , Humanos , Masculino , Mutação/genética , Fenótipo
10.
J Biomed Sci ; 27(1): 68, 2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32446297

RESUMO

BACKGROUND: Tissue oxidative stress, sympathetic activation and nutrient sensing signals are closely related to adult hypertension of fetal origin, although their interactions in hypertension programming remain unclear. Based on a maternal high-fructose diet (HFD) model of programmed hypertension, we tested the hypothesis that dysfunction of AMP-activated protein kinase (AMPK)-regulated angiotensin type 1 receptor (AT1R) expression and sirtuin1 (SIRT1)-dependent mitochondrial biogenesis contribute to tissue oxidative stress and sympathoexcitation in programmed hypertension of young offspring. METHODS: Pregnant female rats were randomly assigned to receive normal diet (ND) or HFD (60% fructose) chow during pregnancy and lactation. Both ND and HFD offspring returned to ND chow after weaning, and blood pressure (BP) was monitored from age 6 to 12 weeks. At age of 8 weeks, ND and HFD offspring received oral administration of simvastatin or metformin; or brain microinfusion of losartan. BP was monitored under conscious condition by the tail-cuff method. Nutrient sensing molecules, AT1R, subunits of NADPH oxidase, mitochondrial biogenesis markers in rostral ventrolateral medulla (RVLM) were measured by Western blot analyses. RVLM oxidative stress was measured by fluorescent probe dihydroethidium and lipid peroxidation by malondialdehyde assay. Mitochondrial DNA copy number was determined by quantitative real-time polymerase chain reaction. RESULTS: Increased systolic BP, plasma norepinephrine level and sympathetic vasomotor activity were exhibited by young HFD offspring. Reactive oxygen species (ROS) level was also elevated in RVLM where sympathetic premotor neurons reside, alongside augmented protein expressions of AT1R and pg91phox subunit of NADPH oxidase, decrease in superoxide dismutase 2; and suppression of transcription factors for mitochondrial biogenesis, peroxisome proliferator-activated receptor γ co-activator α (PGC-1α) and mitochondrial transcription factor A (TFAM). Maternal HFD also attenuated AMPK phosphorylation and protein expression of SIRT1 in RVLM of young offspring. Oral administration of a HMG-CoA reductase inhibitor, simvastatin, or an AMPK activator, metformin, to young HFD offspring reversed maternal HFD-programmed increase in AT1R and decreases in SIRT1, PGC-1α and TFAM; alleviated ROS production in RVLM, and attenuated sympathoexcitation and hypertension. CONCLUSION: Dysfunction of AMPK-regulated AT1R expression and SIRT1-mediated mitochondrial biogenesis may contribute to tissue oxidative stress in RVLM, which in turn primes increases of sympathetic vasomotor activity and BP in young offspring programmed by excessive maternal fructose consumption.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Frutose/administração & dosagem , Regulação da Expressão Gênica , Mitocôndrias/fisiologia , Receptor Tipo 1 de Angiotensina/genética , Sirtuína 1/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Feminino , Hipertensão/genética , Exposição Materna , Biogênese de Organelas , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Sirtuína 1/metabolismo
11.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752013

RESUMO

Gut microbiota-dependent metabolites, in particular trimethylamine (TMA), are linked to hypertension. Maternal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure or consumption of food high in fructose (HFR) can induce hypertension in adult offspring. We examined whether 3,3-maternal dimethyl-1-butanol (DMB, an inhibitor of TMA formation) therapy can protect adult offspring against hypertension arising from combined HFR and TCDD exposure. Pregnant Sprague-Dawley rats received regular chow or chow supplemented with fructose (60% diet by weight) throughout pregnancy and lactation. Additionally, the pregnant dams received TCDD (200 ng/kg BW orally) or a corn oil vehicle on days 14 and 21 of gestation, and days 7 and 14 after birth. Some mother rats received 1% DMB in their drinking water throughout pregnancy and lactation. Six groups of male offspring were studied (n = 8 for each group): regular chow (CV), high-fructose diet (HFR), regular diet+TCDD exposure (CT), HFR+TCDD exposure (HRT), high-fructose diet+DMB treatment (HRD), and HFR+TCDD+DMB treatment (HRTD). Our data showed that TCDD exacerbates HFR-induced elevation of blood pressure in male adult offspring, which was prevented by maternal DMB administration. We observed that different maternal insults induced distinct enterotypes in adult offspring. The beneficial effects of DMB are related to alterations of gut microbiota, the increase in nitric oxide (NO) bioavailability, the balance of the renin-angiotensin system, and antagonization of aryl hydrocarbon receptor (AHR) signaling. Our findings cast new light on the role of early intervention targeting of the gut microbiota-dependent metabolite TMA, which may allow us to prevent the development of hypertension programmed by maternal excessive fructose intake and environmental dioxin exposure.


Assuntos
Dieta da Carga de Carboidratos/efeitos adversos , Microbioma Gastrointestinal , Hipertensão , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Animais , Dioxinas/efeitos adversos , Feminino , Frutose/efeitos adversos , Masculino , Metilaminas/farmacologia , Gravidez , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley
12.
Am J Physiol Endocrinol Metab ; 316(4): E622-E634, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668149

RESUMO

Excessive maternal high-fructose diet (HFD) during pregnancy and lactation has been reported to cause metabolic disorders in the offspring. Whether the infant's brain metabolism is disturbed by maternal HFD is largely unknown. Brain energy metabolism is elevated dramatically during fetal and postnatal development, whereby maternal nutrition is a key factor that determines cellular metabolism. Astrocytes, a nonneuronal cell type in the brain, are considered to support the high-energy demands of neurons by supplying lactate. In this study, the effects of maternal HFD on astrocytic glucose metabolism were investigated using hippocampal primary cultures of female infants. We found that glycolytic capacity and mitochondrial respiration and electron transport chain were suppressed by maternal HFD. Mitochondrial DNA copy number and mitochondrial transcription factor A expression were suppressed by maternal HFD. Western blots and immunofluorescent images further indicated that the glucose transporter 1 was downregulated whereas the insulin receptor-α, phospho-insulin receptor substrate-1 (Y612) and the p85 subunit of phosphatidylinositide 3-kinase were upregulated in the HFD group. Pioglitazone, which is known to increase astrocytic glucose metabolism, effectively reversed the suppressed glycolysis, and lactate release was restored. Moreover, pioglitazone also normalized oxidative phosphorylation with an increase of cytosolic ATP. Together, these results suggest that maternal HFD impairs astrocytic energy metabolic pathways that were reversed by pioglitazone.


Assuntos
Astrócitos/efeitos dos fármacos , Açúcares da Dieta/farmacologia , Frutose/farmacologia , Glicólise/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Pioglitazona/farmacologia , Animais , Astrócitos/metabolismo , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Feminino , Desenvolvimento Fetal , Transportador de Glucose Tipo 1/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Cultura Primária de Células , Ratos , Receptor de Insulina/efeitos dos fármacos , Receptor de Insulina/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo
13.
J Neuroinflammation ; 16(1): 224, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729994

RESUMO

BACKGROUND: Decreased heart rate variability (HRV) leads to cardiovascular diseases and increased mortality in clinical studies. However, the underlying mechanisms are still inconclusive. Systemic inflammation-induced neuroinflammation is known to impair the autonomic center of cardiovascular regulation. The dynamic stability of blood pressure and heart rate (HR) is regulated by modulation of the reciprocal responses of sympathetic and parasympathetic tone by the baroreflex, which is controlled by the nucleus of the solitary tract (NTS). METHODS: Systemic inflammation was induced by E. coli lipopolysaccharide (LPS, 1.2 mg/kg/day, 7 days) peritoneal infusion via an osmotic minipump in normotensive Sprague-Dawley rats. Systolic blood pressure (SBP) and HR were measured by femoral artery cannulation and recorded on a polygraph under anesthesia. The low-frequency (LF; 0.25-0.8 Hz) and high-frequency (HF; 0.8-2.4 Hz) components of SBP were adopted as the indices for sympathetic vasomotor tone and parasympathetic vasomotor tone, while the baroreflex effectiveness index (BEI) was adopted from the analysis of SBP and pulse interval (PI). The plasma levels of proinflammatory cytokines and mitochondrial DNA (mtDNA) oxidative damage were analyzed by ELISA. Protein expression was evaluated by Western blot. The distribution of oxidative mtDNA was probed by immunofluorescence. Pharmacological agents were delivered via infusion into the cisterna magna with an osmotic minipump. RESULTS: The suppression of baroreflex sensitivity was concurrent with increased SBP and decreased HR. Neuroinflammatory factors, including TNF-α, CD11b, and Iba-1, were detected in the NTS of the LPS group. Moreover, indices of mtDNA damage, including 8-OHdG and γ-H2AX, were significantly increased in neuronal mitochondria. Pentoxifylline or minocycline intracisternal (IC) infusion effectively prevented mtDNA damage, suggesting that cytokine and microglial activation contributed to mtDNA damage. Synchronically, baroreflex sensitivity was effectively protected, and the elevated blood pressure was significantly relieved. In addition, the mtDNA repair mechanism was significantly enhanced by pentoxifylline or minocycline. CONCLUSION: These results suggest that neuronal mtDNA damage in the NTS induced by neuroinflammation could be the core factor in deteriorating baroreflex desensitization and subsequent cardiovascular dysfunction. Therefore, the enhancement of base excision repair (BER) signaling in mitochondria could be a potential therapeutic strategy for cardiovascular reflex dysregulation.


Assuntos
Barorreflexo/fisiologia , DNA Mitocondrial , Inflamação/fisiopatologia , Núcleo Solitário/fisiopatologia , Animais , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/fisiologia , DNA Mitocondrial/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Sprague-Dawley
14.
Neurochem Res ; 44(7): 1567-1581, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30888577

RESUMO

Dexamethasone is an approved steroid for clinical use to activate or suppress cytokines, chemokines, inflammatory enzymes and adhesion molecules. It enters the brain, by-passing the blood brain barrier, and acts through genomic mechanisms. High levels of dexamethasone are able to induce neuronal cell loss, reduce neurogenesis and cause neuronal dysfunction. The exact mechanisms of steroid, especially the dexamethasone contribute to neuronal damage remain unclear. Therefore, the present study explored the mitochondrial dynamics underlying dexamethasone-induced toxicity of human neuroblastoma SH-SY5Y cells. Neuronal cells treatment with the dexamethasone resulted in a marked decrease in cell proliferation. Dexamethasone-induced neurotoxicity also caused upregulation of mitochondrial fusion and cleaved caspase-3 proteins expression. Mitochondria fusion was found in large proportions of dexamethasone-treated cells. These results suggest that dexamethasone-induced hyperfused mitochondrial structures are associated with a caspase-dependent death process in dexamethasone-induced neurotoxicity. These findings point to the high dosage of dexamethasone as being neurotoxic through impairment of mitochondrial dynamics.


Assuntos
Dexametasona/toxicidade , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
15.
Int J Mol Sci ; 20(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100865

RESUMO

Adult metabolic syndrome is considered to be elicited by the developmental programming which is regulated by the prenatal environment. The maternal excess intake of fructose, a wildly used food additive, is found to be associated with developmental programing-associated cardiovascular diseases. To investigate the effect of maternal fructose exposure (MFE) on endothelial function and repair, which participate in the initiation and progress of cardiovascular disease, we applied a rat model with maternal fructose excess intake during gestational and lactational stage and examined the number and function of endothelial progenitor cells (EPCs) in 3-month-old male offspring with induction of critical limb ischemia (CLI). Results showed that the circulating levels of c-Kit+/CD31+ and Sca-1+/KDR+ EPC were reduced by MFE. In vitro angiogenesis analysis indicated the angiogenic activity of bone marrow-derived EPC, including tube formation and cellular migration, was reduced by MFE. Western blots further indicated the phosphorylated levels of ERK1/2, p38-MAPK, and JNK in circulating peripheral blood mononuclear cells were up-regulated by MFE. Fourteen days after CLI, the reduced blood flow recovery, lowered capillary density, and increased fibrotic area in quadriceps were observed in offspring with MFE. Moreover, the aortic endothelium-mediated vasorelaxant response in offspring was impaired by MFE. In conclusion, maternal fructose intake during gestational and lactational stage modulates the number and angiogenic activity of EPCs and results in poor blood flow recovery after ischemic injury.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Frutose/metabolismo , Frutose/farmacologia , Isquemia/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fluxo Sanguíneo Regional , Animais , Ataxina-1 , Medula Óssea/metabolismo , Doenças Cardiovasculares , Movimento Celular , Modelos Animais de Doenças , Extremidades/patologia , Isquemia/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Proteínas Proto-Oncogênicas c-kit , Ratos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
16.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 274-285, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29054390

RESUMO

Diet-associated insulin resistance (IR) is intimately correlated with the progression of metabolic syndrome and hippocampal dysfunction. Pioglitazone (PIO), a selective peroxisome proliferator-activated receptor gamma (PPARγ) agonist, has been applied to enhance insulin sensitivity. With limited permeability to blood-brain-barrier, it is unclear that whether oral PIO available to cure both the peripheral IR and the impairment in the hippocampus. We evaluated the levels of peripheral and hippocampal IR via the homeostatic model assessment of insulin resistance and hippocampal IRS-1/Akt phosphorylation, respectively, of Wistar Kyoto rats fed with a regular chew or high fructose diet (HFD) for 12weeks. Gavage with PIO (30mg/kg/day, 2weeks) significantly reduced the peripheral IR and reversed the level of hippocampal PPARγ. Moreover, HFD-activated microglia and astrocyte were effectively relieved by PIO. The suppressed brain-derived neurotrophic factor, CaMKIIα, and postsynaptic density protein 95 in the hippocampus were effectively reversed by PIO. However, the hippocampal IR and inhibition of adult neurogenesis in dentate gyrus were not restored by PIO. Together, PIO oral application may reverse the HFD-induced peripheral IR and maintain the existed neuronal circuit by ameliorating glial activation and enhancing synaptic density through BDNF but failed to restore adult neurogenesis in the hippocampus.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Frutose/efeitos adversos , Gliose/prevenção & controle , Hipocampo/efeitos dos fármacos , Resistência à Insulina , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Administração Oral , Células-Tronco Adultas/fisiologia , Animais , Gliose/metabolismo , Gliose/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Masculino , Células-Tronco Neurais/fisiologia , Fármacos Neuroprotetores/farmacologia , Pioglitazona , Ratos , Ratos Endogâmicos WKY , Tiazolidinedionas/administração & dosagem
17.
Int J Mol Sci ; 19(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158497

RESUMO

BACKGROUND: Periventricular white-matter (WM) injury is a prominent feature of brain injury in preterm infants. Thyroxin (T4) treatment reduces the severity of hypoxic-ischemic (HI)-mediated WM injury in the immature brain. This study aimed to delineate molecular events underlying T4 protection following periventricular WM injury in HI rats. METHODS: Right common-carotid-artery ligation, followed by hypoxia, was performed on seven-day-old rat pups. The HI pups were injected with saline, or 0.2 or 1 mg/kg of T4 at 48⁻96 h postoperatively. Cortex and periventricular WM were dissected for real-time (RT)-quantitative polymerase chain reactions (PCRs), immunoblotting, and for immunofluorescence analysis of neurotrophins, myelin, oligodendrocyte precursors, and neointimal. RESULTS: T4 significantly mitigated hypomyelination and oligodendrocyte death in HI pups, whereas angiogenesis of periventricular WM, observed using antiendothelium cell antibody (RECA-1) immunofluorescence and vascular endothelium growth factor (VEGF) immunoblotting, was not affected. T4 also increased the brain-derived neurotrophic factors (BDNFs), but not the nerve growth factor (NGF) expression of injured periventricular WM. However, phosphorylated extracellular signal regulated kinase (p-ERK) and phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB) concentrations, but not the BDNF downstream pathway kinases, p38, c-Jun amino-terminal kinase (c-JNK), or Akt, were reduced in periventricular WM with T4 treatment. Notably, T4 administration significantly increased BDNF and phosphorylated CREB in the overlying cortex of the HI-induced injured cortex. CONCLUSION: Our findings reveal that T4 reversed BNDF signaling to attenuate HI-induced WM injury by activating ERK and CREB pathways in the cortex, but not directly in periventricular WM. This study offers molecular insight into the neuroprotective actions of T4 in HI-mediated WM injury in the immature brain.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Tiroxina/farmacologia , Substância Branca/efeitos dos fármacos , Substância Branca/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
18.
Int J Mol Sci ; 19(4)2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614026

RESUMO

Widespread consumption of a Western diet, comprised of highly refined carbohydrates and fat, may play a role in the epidemic of hypertension. Hypertension can take origin from early life. Metformin is the preferred treatment for type 2 diabetes. We examined whether prenatal metformin therapy can prevent maternal high-fructose plus post-weaning high-fat diets-induced hypertension of developmental origins via regulation of nutrient sensing signals, uric acid, oxidative stress, and the nitric oxide (NO) pathway. Gestating Sprague-Dawley rats received regular chow (ND) or chow supplemented with 60% fructose diet (HFR) throughout pregnancy and lactation. Male offspring were onto either the ND or high-fat diet (HFA) from weaning to 12 weeks of age. A total of 40 male offspring were assigned to five groups (n = 8/group): ND/ND, HFR/ND, ND/HFA, HFR/HFA, and HFR/HFA+metformin. Metformin (500 mg/kg/day) was administered via gastric gavage for three weeks during the pregnancy period. Combined maternal HFR plus post-weaning HFA induced hypertension in male adult offspring, which prenatal metformin therapy prevented. The protective effects of prenatal metformin therapy on HFR/HFA-induced hypertension, including downregulation of the renin-angiotensin system, decrease in uric acid level, and reduction of oxidative stress. Our results highlighted that the programming effects of metformin administered prenatally might be different from those reported in adults, and that deserves further elucidation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Xarope de Milho Rico em Frutose/efeitos adversos , Hipertensão/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Animais , Feminino , Hipertensão/etiologia , Hipoglicemiantes/administração & dosagem , Masculino , Metformina/administração & dosagem , Estresse Oxidativo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Sprague-Dawley , Sistema Renina-Angiotensina
19.
Molecules ; 23(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641494

RESUMO

Consumption of food high in fructose and salt is associated with the epidemic of hypertension. Hypertension can originate from early life. Melatonin, a pleiotropic hormone, regulates blood pressure. We examined whether maternal melatonin therapy can prevent maternal high-fructose combined with post-weaning high-salt diet-induced programmed hypertension in adult offspring. Pregnant Sprague-Dawley rats received either a normal diet (ND) or a 60% fructose diet (HF) during pregnancy and the lactation period. Male offspring were on either the ND or a high-salt diet (HS, 1% NaCl) from weaning to 12 weeks of age and were assigned to five groups (n = 8/group): ND/ND, HF/ND, ND/HS, HF/HS, and HF/HS+melatonin. Melatonin (0.01% in drinking water) was administered during pregnancy and lactation. We observed that maternal HF combined with post-weaning HS diets induced hypertension in male adult offspring, which was attenuated by maternal melatonin therapy. The beneficial effects of maternal melatonin therapy on HF/HS-induced hypertension related to regulating several nutrient-sensing signals, including Sirt1, Sirt4, Prkaa2, Prkab2, Pparg, and Ppargc1a. Additionally, melatonin increased protein levels of mammalian targets of rapamycin (mTOR), decreased plasma asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine levels, and increased the l-arginine-to-ADMA ratio. The reprogramming effects by which maternal melatonin therapy protects against hypertension of developmental origin awaits further elucidation.


Assuntos
Frutose/efeitos adversos , Hipertensão/prevenção & controle , Melatonina/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Cloreto de Sódio/efeitos adversos , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão/induzido quimicamente , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Melatonina/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Desmame
20.
Neurobiol Learn Mem ; 130: 105-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26872592

RESUMO

Impairment of learning and memory has been documented in the later life of offspring to maternal consumption with high energy diet. Environmental stimulation enhances the ability of learning and memory. However, potential effects of environmental stimulation on the programming-associated deficit of learning and memory have not been addressed. Here, we examined the effects of enriched-housing on hippocampal learning and memory in adult female offspring rats from mother fed with 60% high fructose diet (HFD) during pregnancy and lactation. Impairment of spatial learning and memory performance in HFD group was observed in offspring at 3-month-old. Hippocampal brain-derived neurotrophic factor (BDNF) was decreased in the offspring. Moreover, the HFD group showed an up-regulation of histone deacetylase 4 (HDAC4) in the nuclear fractions of hippocampal neurons. Stimulation to the offspring for 4weeks after winning with an enriched-housing environment effectively rescued the decrease in cognitive function and hippocampal BDNF level; alongside a reversal of the increased distribution of nuclear HDAC4. Together these results suggest that later life environmental stimulation effectively rescues the impairment of hippocampal learning and memory in female offspring to maternal HFD intake through redistributing nuclear HDAC4 to increase BDNF expression.


Assuntos
Meio Ambiente , Frutose/administração & dosagem , Histona Desacetilases/metabolismo , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Aprendizagem Espacial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA