Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 22(1): 619, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840923

RESUMO

BACKGROUND: The effectiveness of a surveillance system to detect infections in the population is paramount when confirming elimination. Estimating the sensitivity of a surveillance system requires identifying key steps in the care-seeking cascade, from initial infection to confirmed diagnosis, and quantifying the probability of appropriate action at each stage. Using malaria as an example, a framework was developed to estimate the sensitivity of key components of the malaria surveillance cascade. METHODS: Parameters to quantify the sensitivity of the surveillance system were derived from monthly malaria case data over a period of 36 months and semi-quantitative surveys in 46 health facilities on Java Island, Indonesia. Parameters were informed by the collected empirical data and estimated by modelling the flow of an infected individual through the system using a Bayesian framework. A model-driven health system survey was designed to collect empirical data to inform parameter estimates in the surveillance cascade. RESULTS: Heterogeneity across health facilities was observed in the estimated probability of care-seeking (range = 0.01-0.21, mean ± sd = 0.09 ± 0.05) and testing for malaria (range = 0.00-1.00, mean ± sd = 0.16 ± 0.29). Care-seeking was higher at facilities regularly providing antimalarial drugs (Odds Ratio [OR] = 2.98, 95% Credible Intervals [CI]: 1.54-3.16). Predictably, the availability of functioning microscopy equipment was associated with increased odds of being tested for malaria (OR = 7.33, 95% CI = 20.61). CONCLUSIONS: The methods for estimating facility-level malaria surveillance sensitivity presented here can help provide a benchmark for what constitutes a strong system. The proposed approach also enables programs to identify components of the health system that can be improved to strengthen surveillance and support public-health decision-making.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Teorema de Bayes , Humanos , Indonésia/epidemiologia , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/epidemiologia , Saúde Pública
2.
Lancet ; 395(10233): 1361-1373, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334702

RESUMO

BACKGROUND: In low malaria-endemic settings, screening and treatment of individuals in close proximity to index cases, also known as reactive case detection (RACD), is practised for surveillance and response. However, other approaches could be more effective for reducing transmission. We aimed to evaluate the effectiveness of reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in the low malaria-endemic setting of Zambezi (Namibia). METHODS: We did a cluster-randomised controlled, open-label trial using a two-by-two factorial design of 56 enumeration area clusters in the low malaria-endemic setting of Zambezi (Namibia). We randomly assigned these clusters using restricted randomisation to four groups: RACD only, rfMDA only, RAVC plus RACD, or rfMDA plus RAVC. RACD involved rapid diagnostic testing and treatment with artemether-lumefantrine and single-dose primaquine, rfMDA involved presumptive treatment with artemether-lumefantrine, and RAVC involved indoor residual spraying with pirimiphos-methyl. Interventions were administered within 500 m of index cases. To evaluate the effectiveness of interventions targeting the parasite reservoir in humans (rfMDA vs RACD), in mosquitoes (RAVC vs no RAVC), and in both humans and mosquitoes (rfMDA plus RAVC vs RACD only), an intention-to-treat analysis was done. For each of the three comparisons, the primary outcome was the cumulative incidence of locally acquired malaria cases. This trial is registered with ClinicalTrials.gov, number NCT02610400. FINDINGS: Between Jan 1, 2017, and Dec 31, 2017, 55 enumeration area clusters had 1118 eligible index cases that led to 342 interventions covering 8948 individuals. The cumulative incidence of locally acquired malaria was 30·8 per 1000 person-years (95% CI 12·8-48·7) in the clusters that received rfMDA versus 38·3 per 1000 person-years (23·0-53·6) in the clusters that received RACD; 30·2 per 1000 person-years (15·0-45·5) in the clusters that received RAVC versus 38·9 per 1000 person-years (20·7-57·1) in the clusters that did not receive RAVC; and 25·0 per 1000 person-years (5·2-44·7) in the clusters that received rfMDA plus RAVC versus 41·4 per 1000 person-years (21·5-61·2) in the clusters that received RACD only. After adjusting for imbalances in baseline and implementation factors, the incidence of malaria was lower in clusters receiving rfMDA than in those receiving RACD (adjusted incidence rate ratio 0·52 [95% CI 0·16-0·88], p=0·009), lower in clusters receiving RAVC than in those that did not (0·48 [0·16-0·80], p=0·002), and lower in clusters that received rfMDA plus RAVC than in those receiving RACD only (0·26 [0·10-0·68], p=0·006). No serious adverse events were reported. INTERPRETATION: In a low malaria-endemic setting, rfMDA and RAVC, implemented alone and in combination, reduced malaria transmission and should be considered as alternatives to RACD for elimination of malaria. FUNDING: Novartis Foundation, Bill & Melinda Gates Foundation, and Horchow Family Fund.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/prevenção & controle , Administração Massiva de Medicamentos/métodos , Controle de Mosquitos , Antimaláricos/administração & dosagem , Combinação Arteméter e Lumefantrina/administração & dosagem , Análise por Conglomerados , Humanos , Malária Falciparum/epidemiologia , Controle de Mosquitos/métodos , Namíbia/epidemiologia , Plasmodium falciparum , Estudos Soroepidemiológicos
3.
BMC Infect Dis ; 21(1): 424, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952194

RESUMO

BACKGROUND: Although by late February 2020 the COVID-19 epidemic was effectively controlled in Wuhan, China, estimating the effects of interventions, such as transportation restrictions and quarantine measures, on the early COVID-19 transmission dynamics in Wuhan is critical for guiding future virus containment strategies. Since the exact number of infected cases is unknown, the number of documented cases was used by many disease transmission models to infer epidemiological parameters. This means that it was possible to produce biased estimates of epidemiological parameters and hence of the effects of intervention measures, because the percentage of all cases that were documented changed during the first 2 months of the epidemic, as a consequence of a gradually improving diagnostic capability. METHODS: To overcome these limitations, we constructed a stochastic susceptible-exposed-infected-quarantined-recovered (SEIQR) model, accounting for intervention measures and temporal changes in the proportion of new documented infections out of total new infections, to characterize the transmission dynamics of COVID-19 in Wuhan across different stages of the outbreak. Pre-symptomatic transmission was taken into account in our model, and all epidemiological parameters were estimated using the Particle Markov-chain Monte Carlo (PMCMC) method. RESULTS: Our model captured the local Wuhan epidemic pattern as two-peak transmission dynamics, with one peak on February 4 and the other on February 12, 2020. The impact of intervention measures determined the timing of the first peak, leading to an 86% drop in the Re from 3.23 (95% CI, 2.22 to 4.20) to 0.45 (95% CI, 0.20 to 0.69). The improved diagnostic capability led to the second peak and a higher proportion of documented infections. Our estimated proportion of new documented infections out of the total new infections increased from 11% (95% CI 1-43%) to 28% (95% CI 4-62%) after January 26 when more detection kits were released. After the introduction of a new diagnostic criterion (case definition) on February 12, a higher proportion of daily infected cases were documented (49% (95% CI 7-79%)). CONCLUSIONS: Transportation restrictions and quarantine measures together in Wuhan were able to contain local epidemic growth.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Modelos Teóricos , Número Básico de Reprodução , COVID-19/diagnóstico , China/epidemiologia , Hospitalização/estatística & dados numéricos , Humanos , Controle de Infecções , Período de Incubação de Doenças Infecciosas , Cadeias de Markov , Método de Monte Carlo , Quarentena , Processos Estocásticos
4.
Nature ; 528(7580): S53-9, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26633766

RESUMO

It is estimated that pneumonia is responsible for 15% of childhood deaths worldwide. Recent research has shown that hypoxia and malnutrition are strong predictors of mortality in children hospitalized for pneumonia. It is estimated that 15% of children under 5 who are hospitalized for pneumonia have hypoxaemia and that around 1.5 million children with severe pneumonia require oxygen treatment each year. We developed a deterministic compartmental model that links the care pathway to disease progression to assess the impact of introducing pulse oximetry as a prognostic tool to distinguish severe from non-severe pneumonia in under-5 year olds across 15 countries with the highest burden worldwide. We estimate that, assuming access to supplemental oxygen, pulse oximetry has the potential to avert up to 148,000 deaths if implemented across the 15 countries. By contrast, integrated management of childhood illness alone has a relatively small impact on mortality owing to its low sensitivity. Pulse oximetry can significantly increase the incidence of correctly treated severe cases as well as reduce the incidence of incorrect treatment with antibiotics. We also found that the combination of pulse oximetry with integrated management of childhood illness is highly cost-effective, with median estimates ranging from US$2.97 to $52.92 per disability-adjusted life year averted in the 15 countries analysed. This combination of substantial burden reduction and favourable cost-effectiveness makes pulse oximetry a promising candidate for improving the prognosis for children with pneumonia in resource-poor settings.


Assuntos
Recursos em Saúde/economia , Oximetria , Pneumonia/diagnóstico , Pneumonia/mortalidade , Criança , Análise Custo-Benefício , Progressão da Doença , Saúde Global , Humanos , Hipóxia/complicações , Hipóxia/diagnóstico , Incidência , Oximetria/economia , Oximetria/estatística & dados numéricos , Oxigênio/uso terapêutico , Pneumonia/economia , Pneumonia/terapia , Sensibilidade e Especificidade
5.
Nature ; 528(7580): S86-93, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26633770

RESUMO

The global burden of malaria has been substantially reduced over the past two decades. Future efforts to reduce malaria further will require moving beyond the treatment of clinical infections to targeting malaria transmission more broadly in the community. As such, the accurate identification of asymptomatic human infections, which can sustain a large proportion of transmission, is becoming a vital component of control and elimination programmes. We determined the relationship across common diagnostics used to measure malaria prevalence - polymerase chain reaction (PCR), rapid diagnostic test and microscopy - for the detection of Plasmodium falciparum infections in endemic populations based on a pooled analysis of cross-sectional data. We included data from more than 170,000 individuals comparing the detection by rapid diagnostic test and microscopy, and 30,000 for detection by rapid diagnostic test and PCR. The analysis showed that, on average, rapid diagnostic tests detected 41% (95% confidence interval = 26-66%) of PCR-positive infections. Data for the comparison of rapid diagnostic test to PCR detection at high transmission intensity and in adults were sparse. Prevalence measured by rapid diagnostic test and microscopy was comparable, although rapid diagnostic test detected slightly more infections than microscopy. On average, microscopy captured 87% (95% confidence interval = 74-102%) of rapid diagnostic test-positive infections. The extent to which higher rapid diagnostic test detection reflects increased sensitivity, lack of specificity or both, is unclear. Once the contribution of asymptomatic individuals to the infectious reservoir is better defined, future analyses should ideally establish optimal detection limits of new diagnostics for use in control and elimination strategies.


Assuntos
Portador Sadio/diagnóstico , Portador Sadio/prevenção & controle , Testes Diagnósticos de Rotina , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/isolamento & purificação , Adolescente , Distribuição por Idade , Portador Sadio/tratamento farmacológico , Portador Sadio/parasitologia , Criança , Pré-Escolar , Feminino , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Masculino , Prevalência
6.
Clin Infect Dis ; 70(12): 2544-2552, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31402382

RESUMO

BACKGROUND: We assessed the impact of exposure to Plasmodium falciparum on parasite kinetics, clinical symptoms, and functional immunity after controlled human malaria infection (CHMI) in 2 cohorts with different levels of previous malarial exposure. METHODS: Nine adult males with high (sero-high) and 10 with low (sero-low) previous exposure received 3200 P. falciparum sporozoites (PfSPZ) of PfSPZ Challenge by direct venous inoculation and were followed for 35 days for parasitemia by thick blood smear (TBS) and quantitative polymerase chain reaction. Endpoints were time to parasitemia, adverse events, and immune responses. RESULTS: Ten of 10 (100%) volunteers in the sero-low and 7 of 9 (77.8%) in the sero-high group developed parasitemia detected by TBS in the first 28 days (P = .125). The median time to parasitemia was significantly shorter in the sero-low group than the sero-high group (9 days [interquartile range {IQR} 7.5-11.0] vs 11.0 days [IQR 7.5-18.0], respectively; log-rank test, P = .005). Antibody recognition of sporozoites was significantly higher in the sero-high (median, 17.93 [IQR 12.95-24] arbitrary units [AU]) than the sero-low volunteers (median, 10.54 [IQR, 8.36-12.12] AU) (P = .006). Growth inhibitory activity was significantly higher in the sero-high (median, 21.8% [IQR, 8.15%-29.65%]) than in the sero-low group (median, 8.3% [IQR, 5.6%-10.23%]) (P = .025). CONCLUSIONS: CHMI was safe and well tolerated in this population. Individuals with serological evidence of higher malaria exposure were able to better control infection and had higher parasite growth inhibitory activity. CLINICAL TRIALS REGISTRATION: NCT03496454.


Assuntos
Malária Falciparum , Malária , Parasitos , Adulto , Animais , Humanos , Cinética , Masculino , Plasmodium falciparum
7.
BMC Med ; 18(1): 304, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32972398

RESUMO

BACKGROUND: As malaria transmission declines, sensitive diagnostics are needed to evaluate interventions and monitor transmission. Serological assays measuring malaria antibody responses offer a cost-effective detection method to supplement existing surveillance tools. METHODS: A prospective cohort study was conducted from 2013 to 2015 in 12 villages across five administrative regions in The Gambia. Serological analysis included samples from the West Coast Region at the start and end of the season (July and December 2013) and from the Upper River Region in July and December 2013 and April and December 2014. Antigen-specific antibody responses to eight Plasmodium falciparum (P. falciparum) antigens-Etramp5.Ag1, GEXP18, HSP40.Ag1, Rh2.2030, EBA175 RIII-V, PfMSP119, PfAMA1, and PfGLURP.R2-were quantified using a multiplexed bead-based assay. The association between antibody responses and clinical and parasitological endpoints was estimated at the individual, household, and population level. RESULTS: Strong associations were observed between clinical malaria and concurrent sero-positivity to Etramp5.Ag1 (aOR 4.60 95% CI 2.98-7.12), PfMSP119 (aOR 4.09 95% CI 2.60-6.44), PfAMA1 (aOR 2.32 95% CI 1.40-3.85), and PfGLURP.R2 (aOR 3.12, 95% CI 2.92-4.95), while asymptomatic infection was associated with sero-positivity to all antigens. Village-level sero-prevalence amongst children 2-10 years against Etramp5.Ag1, HSP40.Ag1, and PfMSP119 showed the highest correlations with clinical and P. falciparum infection incidence rates. For all antigens, there were increased odds of asymptomatic P. falciparum infection in subjects residing in a compound with greater than 50% sero-prevalence, with a 2- to 3-fold increase in odds of infection associated with Etramp5.Ag1, GEXP18, Rh2.2030, PfMSP119, and PfAMA1. For individuals residing in sero-positive compounds, the odds of clinical malaria were reduced, suggesting a protective effect. CONCLUSIONS: At low transmission, long-lived antibody responses could indicate foci of malaria transmission that have been ongoing for several seasons or years. In settings where sub-patent infections are prevalent and fluctuate below the detection limit of polymerase chain reaction (PCR), the presence of short-lived antibodies may indicate recent infectivity, particularly in the dry season when clinical cases are rare. Serological responses may reflect a persistent reservoir of infection, warranting community-targeted interventions if individuals are not clinically apparent but have the potential to transmit. Therefore, serological surveillance at the individual and household level may be used to target interventions where there are foci of asymptomatically infected individuals, such as by measuring the magnitude of age-stratified antibody levels or identifying areas with clustering of above-average antibody responses across a diverse range of serological markers.


Assuntos
Formação de Anticorpos/imunologia , Malária Vivax/epidemiologia , Estudos Soroepidemiológicos , Adolescente , Criança , Pré-Escolar , Feminino , Gâmbia , Humanos , Masculino , Prevalência , Estudos Prospectivos , Estações do Ano
8.
BMC Med ; 18(1): 331, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33183292

RESUMO

BACKGROUND: As The Gambia aims to achieve malaria elimination by 2030, serological assays are a useful surveillance tool to monitor trends in malaria incidence and evaluate community-based interventions. METHODS: Within a mass drug administration (MDA) study in The Gambia, where reduced malaria infection and clinical disease were observed after the intervention, a serological sub-study was conducted in four study villages. Spatio-temporal variation in transmission was measured with a panel of recombinant Pf antigens on a multiplexed bead-based assay. Village-level antibody levels were quantified as under-15 sero-prevalence, sero-conversion rates, and age-adjusted antibody acquisition rates. Antibody levels prior to MDA were assessed for association with persistent malaria infection after community chemoprophylaxis. RESULTS: Seasonal changes in antibodies to Etramp5.Ag1 were observed in children under 15 years in two transmission settings-the West Coast and Upper River Regions (4.32% and 31.30% Pf prevalence, respectively). At the end of the malaria season, short-lived antibody responses to Etramp5.Ag1, GEXP18, HSP40.Ag1, EBA175 RIII-V, and Rh2.2030 were lower amongst 1-15 year olds in the West Coast compared to the Upper River, reflecting known differences in transmission. Prior to MDA, individuals in the top 50th percentile of antibody levels had two-fold higher odds of clinical malaria during the transmission season, consistent with previous findings from the Malaria Transmission Dynamics Study, where individuals infected before the implementation of MDA had two-fold higher odds of re-infection post-MDA. CONCLUSIONS: Serological markers can serve dual functions as indicators of malaria exposure and incidence. By monitoring age-specific sero-prevalence, the magnitude of age-stratified antibody levels, or identifying groups of individuals with above-average antibody responses, these antigens have the potential to complement conventional malaria surveillance tools. Further studies, particularly cluster randomised trials, can help establish standardised serological protocols to reliably measure transmission across endemic settings.


Assuntos
Malária/epidemiologia , Administração Massiva de Medicamentos/métodos , Plasmodium falciparum/patogenicidade , Adolescente , Criança , Pré-Escolar , Feminino , Gâmbia , Humanos , Incidência , Masculino , Prevalência , Estudos Prospectivos
9.
Nat Med ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965434

RESUMO

Malaria-elimination interventions aim to extinguish hotspots and prevent transmission to nearby areas. Here, we re-analyzed a cluster-randomized trial of reactive, focal interventions (chemoprevention using artemether-lumefantrine and/or indoor residual spraying with pirimiphos-methyl) delivered within 500 m of confirmed malaria index cases in Namibia to measure direct effects (among intervention recipients within 500 m) and spillover effects (among non-intervention recipients within 3 km) on incidence, prevalence and seroprevalence. There was no or weak evidence of direct effects, but the sample size of intervention recipients was small, limiting statistical power. There was the strongest evidence of spillover effects of combined chemoprevention and indoor residual spraying. Among non-recipients within 1 km of index cases, the combined intervention reduced malaria incidence by 43% (95% confidence interval, 20-59%). In analyses among non-recipients within 3 km of interventions, the combined intervention reduced infection prevalence by 79% (6-95%) and seroprevalence, which captures recent infections and has higher statistical power, by 34% (20-45%). Accounting for spillover effects increased the cost-effectiveness of the combined intervention by 42%. Targeting hotspots with combined chemoprevention and vector-control interventions can indirectly benefit non-recipients up to 3 km away.

10.
Sci Rep ; 14(1): 2806, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307878

RESUMO

Despite progress towards malaria reduction in Peru, measuring exposure in low transmission areas is crucial for achieving elimination. This study focuses on two very low transmission areas in Loreto (Peruvian Amazon) and aims to determine the relationship between malaria exposure and proximity to health facilities. Individual data was collected from 38 villages in Indiana and Belen, including geo-referenced households and blood samples for microscopy, PCR and serological analysis. A segmented linear regression model identified significant changes in seropositivity trends among different age groups. Local Getis-Ord Gi* statistic revealed clusters of households with high (hotspots) or low (coldspots) seropositivity rates. Findings from 4000 individuals showed a seropositivity level of 2.5% (95%CI: 2.0%-3.0%) for P. falciparum and 7.8% (95%CI: 7.0%-8.7%) for P. vivax, indicating recent or historical exposure. The segmented regression showed exposure reductions in the 40-50 age group (ß1 = 0.043, p = 0.003) for P. vivax and the 50-60 age group (ß1 = 0.005, p = 0.010) for P. falciparum. Long and extreme distance villages from Regional Hospital of Loreto exhibited higher malaria exposure compared to proximate and medium distance villages (p < 0.001). This study showed the seropositivity of malaria in two very low transmission areas and confirmed the spatial pattern of hotspots as villages become more distant.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Peru/epidemiologia , Plasmodium falciparum , Plasmodium vivax , Estudos Soroepidemiológicos , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia
11.
Vaccine ; 41(49): 7307-7312, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37949751

RESUMO

The WHO/MPP mRNA Technology Transfer Programme, initiated in 2021, focuses on establishing mRNA vaccine manufacturing capacity in LMICs. On 17-21 April 2023, Programme partners were convened to review technology transfer progress, discuss sustainability aspects and promote mRNA product development for diseases relevant to LMICs. To help guide product development, this report introduces key considerations for for understanding the likelihood of technical and regulatory success and of policy development and procurement for mRNA vaccines to be developed and manufactured in LMICs. The report underscores the potential for LMICs to establish sustainable mRNA R&D pipelines.


Assuntos
Países em Desenvolvimento , Vacinas , Transferência de Tecnologia , Comércio , Organização Mundial da Saúde
12.
JAMIA Open ; 6(2): ooad031, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37181729

RESUMO

Objective: To describe a user-centered approach to develop, pilot test, and refine requirements for 3 electronic health record (EHR)-integrated interventions that target key diagnostic process failures in hospitalized patients. Materials and Methods: Three interventions were prioritized for development: a Diagnostic Safety Column (DSC) within an EHR-integrated dashboard to identify at-risk patients; a Diagnostic Time-Out (DTO) for clinicians to reassess the working diagnosis; and a Patient Diagnosis Questionnaire (PDQ) to gather patient concerns about the diagnostic process. Initial requirements were refined from analysis of test cases with elevated risk predicted by DSC logic compared to risk perceived by a clinician working group; DTO testing sessions with clinicians; PDQ responses from patients; and focus groups with clinicians and patient advisors using storyboarding to model the integrated interventions. Mixed methods analysis of participant responses was used to identify final requirements and potential implementation barriers. Results: Final requirements from analysis of 10 test cases predicted by the DSC, 18 clinician DTO participants, and 39 PDQ responses included the following: DSC configurable parameters (variables, weights) to adjust baseline risk estimates in real-time based on new clinical data collected during hospitalization; more concise DTO wording and flexibility for clinicians to conduct the DTO with or without the patient present; and integration of PDQ responses into the DSC to ensure closed-looped communication with clinicians. Analysis of focus groups confirmed that tight integration of the interventions with the EHR would be necessary to prompt clinicians to reconsider the working diagnosis in cases with elevated diagnostic error (DE) risk or uncertainty. Potential implementation barriers included alert fatigue and distrust of the risk algorithm (DSC); time constraints, redundancies, and concerns about disclosing uncertainty to patients (DTO); and patient disagreement with the care team's diagnosis (PDQ). Discussion: A user-centered approach led to evolution of requirements for 3 interventions targeting key diagnostic process failures in hospitalized patients at risk for DE. Conclusions: We identify challenges and offer lessons from our user-centered design process.

13.
medRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37790419

RESUMO

Malaria elimination interventions in low-transmission settings aim to extinguish hot spots and prevent transmission to nearby areas. In malaria elimination settings, the World Health Organization recommends reactive, focal interventions targeted to the area near malaria cases shortly after they are detected. A key question is whether these interventions reduce transmission to nearby uninfected or asymptomatic individuals who did not receive interventions. Here, we measured direct effects (among intervention recipients) and spillover effects (among non-recipients) of reactive, focal interventions delivered within 500m of confirmed malaria index cases in a cluster-randomized trial in Namibia. The trial delivered malaria chemoprevention (artemether lumefantrine) and vector control (indoor residual spraying with Actellic) separately and in combination using a factorial design. We compared incidence, infection prevalence, and seroprevalence between study arms among intervention recipients (direct effects) and non-recipients (spillover effects) up to 3 km away from index cases. We calculated incremental cost-effectiveness ratios accounting for spillover effects. The combined chemoprevention and vector control intervention produced direct effects and spillover effects. In the primary analysis among non-recipients within 1 km from index cases, the combined intervention reduced malaria incidence by 43% (95% CI 20%, 59%). In secondary analyses among non-recipients 500m-3 km from interventions, the combined intervention reduced infection by 79% (6%, 95%) and seroprevalence 34% (20%, 45%). Accounting for spillover effects increased the cost-effectiveness of the combined intervention by 37%. Our findings provide the first evidence that targeting hot spots with combined chemoprevention and vector control interventions can indirectly benefit non-recipients up to 3 km away.

14.
PLOS Glob Public Health ; 2(12): e0001295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962857

RESUMO

Efforts to eliminate malaria transmission need evidence-based strategies. However, accurately assessing end-game malaria elimination strategies is challenging due to the low level of transmission and the rarity of infections. We hypothesised that presumptively treating individuals during reactive case detection (RCD) would reduce transmission and that serology would more sensitively detect this change over standard approaches. We conducted a cluster randomised control trial (NCT02654912) of presumptive reactive focal drug administration (RFDA-intervention) compared to the standard of care, reactive focal test and treat (RFTAT-control) in Southern Province, Zambia-an area of low seasonal transmission (overall incidence of ~3 per 1,000). We measured routine malaria incidence from health facilities as well as PCR parasite prevalence / antimalarial seroprevalence in an endline cross-sectional population survey. No significant difference was identified from routine incidence data and endline prevalence by polymerase chain reaction (PCR) had insufficient numbers of malaria infections (i.e., 16 infections among 6,276 children) to assess the intervention. Comparing long-term serological markers, we found a 19% (95% CI = 4-32%) reduction in seropositivity for the RFDA intervention using a difference in differences approach incorporating serological positivity and age. We also found a 37% (95% CI = 2-59%) reduction in seropositivity to short-term serological markers in a post-only comparison. These serological analyses provide compelling evidence that RFDA both has an impact on malaria transmission and is an appropriate end-game malaria elimination strategy. Furthermore, serology provides a more sensitive approach to measure changes in transmission that other approaches miss, particularly in very low transmission settings. Trial Registration: Registered at www.clinicaltrials.gov (NCT02654912, 13/1/2016).

15.
Front Med (Lausanne) ; 9: 929366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059850

RESUMO

The epidemiology of malaria changes as prevalence falls in low-transmission settings, with remaining infections becoming more difficult to detect and diagnose. At this stage active surveillance is critical to detect residual hotspots of transmission. However, diagnostic tools used in active surveillance generally only detect concurrent infections, and surveys may benefit from sensitive tools such as serological assays. Serology can be used to interrogate and characterize individuals' previous exposure to malaria over longer durations, providing information essential to the detection of remaining foci of infection. We ran blood samples collected from a 2016 population-based survey in the low-transmission setting of northern Lao PDR on a multiplexed bead assay to characterize historic and recent exposures to Plasmodium falciparum and vivax. Using geostatistical methods and remote-sensing data we assessed the environmental and spatial associations with exposure, and created predictive maps of exposure within the study sites. We additionally linked the active surveillance PCR and serology data with passively collected surveillance data from health facility records. We aimed to highlight the added information which can be gained from serology as a tool in active surveillance surveys in low-transmission settings, and to identify priority areas for national surveillance programmes where malaria risk is higher. We also discuss the issues faced when linking malaria data from multiple sources using multiple diagnostic endpoints.

16.
BMJ Open ; 12(6): e049050, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35738650

RESUMO

OBJECTIVES: To estimate the cost and cost effectiveness of reactive case detection (RACD), reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) to reduce malaria in a low endemic setting. SETTING: The study was part of a 2×2 factorial design cluster randomised controlled trial within the catchment area of 11 primary health facilities in Zambezi, Namibia. PARTICIPANTS: Cost and outcome data were collected from the trial, which included 8948 community members that received interventions due to their residence within 500 m of malaria index cases. OUTCOME MEASURES: The primary outcome was incremental cost effectiveness ratio (ICER) per in incident case averted. ICER per prevalent case and per disability-adjusted life years (DALY) averted were secondary outcomes, as were per unit interventions costs and personnel time. Outcomes were compared as: (1) rfMDA versus RACD, (2) RAVC versus no RAVC and (3) rfMDA+RAVC versus RACD only. RESULTS: rfMDA cost 1.1× more than RACD, and RAVC cost 1.7× more than no RAVC. Relative to RACD only, the cost of rfMDA+RAVC was double ($3082 vs $1553 per event). The ICERs for rfMDA versus RACD, RAVC versus no RAVC and rfMDA+RAVC versus RACD only were $114, $1472 and $842, per incident case averted, respectively. Using prevalent infections and DALYs as outcomes, trends were similar. The median personnel time to implement rfMDA was 20% lower than for RACD (30 vs 38 min per person). The median personnel time for RAVC was 34 min per structure sprayed. CONCLUSION: Implemented alone or in combination, rfMDA and RAVC were cost effective in reducing malaria incidence and prevalence despite higher implementation costs in the intervention compared with control arms. Compared with RACD, rfMDA was time saving. Cost and time requirements for the combined intervention could be decreased by implementing rfMDA and RAVC simultaneously by a single team. TRIAL REGISTRATION NUMBER: NCT02610400; Post-results.


Assuntos
Malária , Administração Massiva de Medicamentos , Análise Custo-Benefício , Humanos , Malária/diagnóstico , Malária/epidemiologia , Malária/prevenção & controle , Namíbia/epidemiologia , Projetos de Pesquisa
17.
EClinicalMedicine ; 44: 101272, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35198913

RESUMO

BACKGROUND: Due to challenges in measuring changes in malaria at low transmission, serology is increasingly being used to complement clinical and parasitological surveillance. Longitudinal studies have shown that serological markers, such as Etramp5.Ag1, can reflect spatio-temporal differences in malaria transmission. However, these markers have yet to be used as endpoints in intervention trials. METHODS: Based on data from a 2017 cluster randomised trial conducted in Zambezi Region, Namibia, evaluating the effectiveness of reactive focal mass drug administration (rfMDA) and reactive vector control (RAVC), this study conducted a secondary analysis comparing antibody responses between intervention arms as trial endpoints. Antibody responses were measured on a multiplex immunoassay, using a panel of eight serological markers of Plasmodium falciparum infection - Etramp5.Ag1, GEXP18, HSP40.Ag1, Rh2.2030, EBA175, PfMSP119, PfAMA1, and PfGLURP.R2. FINDINGS: Reductions in sero-prevalence to antigens Etramp.Ag1, PfMSP119, Rh2.2030, and PfAMA1 were observed in study arms combining rfMDA and RAVC, but only effects for Etramp5.Ag1 were statistically significant. Etramp5.Ag1 sero-prevalence was significantly lower in all intervention arms. Compared to the reference arms, adjusted prevalence ratio (aPR) for Etramp5.Ag1 was 0.78 (95%CI 0.65 - 0.91, p = 0.0007) in the rfMDA arms and 0.79 (95%CI 0.67 - 0.92, p = 0.001) in the RAVC arms. For the combined rfMDA plus RAVC intervention, aPR was 0.59 (95%CI 0.46 - 0.76, p < 0.0001). Significant reductions were also observed based on continuous antibody responses. Sero-prevalence as an endpoint was found to achieve higher study power (99.9% power to detect a 50% reduction in prevalence) compared to quantitative polymerase chain reaction (qPCR) prevalence (72.9% power to detect a 50% reduction in prevalence). INTERPRETATION: While the observed relative reduction in qPCR prevalence in the study was greater than serology, the use of serological endpoints to evaluate trial outcomes measured effect size with improved precision and study power. Serology has clear application in cluster randomised trials, particularly in settings where measuring clinical incidence or infection is less reliable due to seasonal fluctuations, limitations in health care seeking, or incomplete testing and reporting. FUNDING: This study was supported by Novartis Foundation (A122666), the Bill & Melinda Gates Foundation (OPP1160129), and the Horchow Family Fund (5,300,375,400).

19.
PLoS Negl Trop Dis ; 15(6): e0009457, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181665

RESUMO

BACKGROUND: Serological surveys with multiplex bead assays can be used to assess seroprevalence to multiple pathogens simultaneously. However, multiple methods have been used to generate cut-off values for seropositivity and these may lead to inconsistent interpretation of results. A literature review was conducted to describe the methods used to determine cut-off values for data generated by multiplex bead assays. METHODOLOGY/PRINCIPAL FINDINGS: A search was conducted in PubMed that included articles published from January 2010 to January 2020, and 308 relevant articles were identified that included the terms "serology", "cut-offs", and "multiplex bead assays". After application of exclusion of articles not relevant to neglected tropical diseases (NTD), vaccine preventable diseases (VPD), or malaria, 55 articles were examined based on their relevance to NTD or VPD. The most frequently applied approaches to determine seropositivity included the use of presumed unexposed populations, mixture models, receiver operating curves (ROC), and international standards. Other methods included the use of quantiles, pre-exposed endemic cohorts, and visual inflection points. CONCLUSIONS/SIGNIFICANCE: For disease control programmes, seropositivity is a practical and easily interpretable health metric but determining appropriate cut-offs for positivity can be challenging. Considerations for optimal cut-off approaches should include factors such as methods recommended by previous research, transmission dynamics, and the immunological backgrounds of the population. In the absence of international standards for estimating seropositivity in a population, the use of consistent methods that align with individual disease epidemiological data will improve comparability between settings and enable the assessment of changes over time.


Assuntos
Doenças Transmissíveis/sangue , Doenças Transmissíveis/diagnóstico , Estudos Soroepidemiológicos , Testes Sorológicos/métodos , Testes Sorológicos/normas , Medicina Tropical/métodos , Humanos , Doenças Preveníveis por Vacina/diagnóstico
20.
Nat Commun ; 12(1): 2443, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903595

RESUMO

Plasmodium falciparum gametocyte kinetics and infectivity may differ between chronic and incident infections. In the current study, we assess parasite kinetics and infectivity to mosquitoes among children (aged 5-10 years) from Burkina Faso with (a) incident infections following parasite clearance (n = 48) and (b) chronic asymptomatic infections (n = 60). In the incident infection cohort, 92% (44/48) of children develop symptoms within 35 days, compared to 23% (14/60) in the chronic cohort. All individuals with chronic infection carried gametocytes or developed them during follow-up, whereas only 35% (17/48) in the incident cohort produce gametocytes before becoming symptomatic and receiving treatment. Parasite multiplication rate (PMR) and the relative abundance of ap2-g and gexp-5 transcripts are positively associated with gametocyte production. Antibody responses are higher and PMR lower in chronic infections. The presence of symptoms and sexual stage immune responses are associated with reductions in gametocyte infectivity to mosquitoes. We observe that most incident infections require treatment before the density of mature gametocytes is sufficient to infect mosquitoes. In contrast, chronic, asymptomatic infections represent a significant source of mosquito infections. Our observations support the notion that malaria transmission reduction may be expedited by enhanced case management, involving both symptom-screening and infection detection.


Assuntos
Anopheles/crescimento & desenvolvimento , Insetos Vetores/crescimento & desenvolvimento , Malária Falciparum/transmissão , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Anopheles/parasitologia , Burkina Faso/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Incidência , Insetos Vetores/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Plasmodium falciparum/fisiologia , Densidade Demográfica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA