Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7971): 774-781, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37495880

RESUMO

Most El Niño events occur sporadically and peak in a single winter1-3, whereas La Niña tends to develop after an El Niño and last for two years or longer4-7. Relative to single-year La Niña, consecutive La Niña features meridionally broader easterly winds and hence a slower heat recharge of the equatorial Pacific6,7, enabling the cold anomalies to persist, exerting prolonged impacts on global climate, ecosystems and agriculture8-13. Future changes to multi-year-long La Niña events remain unknown. Here, using climate models under future greenhouse-gas forcings14, we find an increased frequency of consecutive La Niña ranging from 19 ± 11% in a low-emission scenario to 33 ± 13% in a high-emission scenario, supported by an inter-model consensus stronger in higher-emission scenarios. Under greenhouse warming, a mean-state warming maximum in the subtropical northeastern Pacific enhances the regional thermodynamic response to perturbations, generating anomalous easterlies that are further northward than in the twentieth century in response to El Niño warm anomalies. The sensitivity of the northward-broadened anomaly pattern is further increased by a warming maximum in the equatorial eastern Pacific. The slower heat recharge associated with the northward-broadened easterly anomalies facilitates the cold anomalies of the first-year La Niña to persist into a second-year La Niña. Thus, climate extremes as seen during historical consecutive La Niña episodes probably occur more frequently in the twenty-first century.


Assuntos
Modelos Climáticos , El Niño Oscilação Sul , Aquecimento Global , Ecossistema , Estações do Ano , Oceano Pacífico , Efeito Estufa , Termodinâmica
2.
Nature ; 588(7836): E3, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33199920

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 585(7823): 68-73, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879502

RESUMO

El Niño and La Niña, collectively referred to as the El Niño-Southern Oscillation (ENSO), are not only highly consequential1-6 but also strongly nonlinear7-14. For example, the maximum warm anomalies of El Niño, which occur in the equatorial eastern Pacific Ocean, are larger than the maximum cold anomalies of La Niña, which are centred in the equatorial central Pacific Ocean7-9. The associated atmospheric nonlinear thermal damping cools the equatorial Pacific during El Niño but warms it during La Niña15,16. Under greenhouse warming, climate models project an increase in the frequency of strong El Niño and La Niña events, but the change differs vastly across models17, which is partially attributed to internal variability18-23. Here we show that like a butterfly effect24, an infinitesimal random perturbation to identical initial conditions induces vastly different initial ENSO variability, which systematically affects its response to greenhouse warming a century later. In experiments with higher initial variability, a greater cumulative oceanic heat loss from ENSO thermal damping reduces stratification of the upper equatorial Pacific Ocean, leading to a smaller increase in ENSO variability under subsquent greenhouse warming. This self-modulating mechanism operates in two large ensembles generated using two different models, each commencing from identical initial conditions but with a butterfly perturbation24,25; it also operates in a large ensemble generated with another model commencing from different initial conditions25,26 and across climate models participating in the Coupled Model Intercomparison Project27,28. Thus, if the greenhouse-warming-induced increase in ENSO variability29 is initially suppressed by internal variability, future ENSO variability is likely to be enhanced, and vice versa. This self-modulation linking ENSO variability across time presents a different perspective for understanding the dynamics of ENSO variability on multiple timescales in a changing climate.

4.
Nano Lett ; 24(14): 4124-4131, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38483552

RESUMO

Dynamic reversible noncovalent interactions make supramolecular framework (SF) structures flexible and designable. A three-dimensional (3D) growth of such frameworks is beneficial to improve the structure stability while maintaining unique properties. Here, through the ionic interaction of the polyoxometalate cluster, coordination of zinc ions with cationic terpyridine, and hydrogen bonding of grafted carboxyl groups, the construction of a 3D SF at a well-crystallized state is realized. The framework can grow in situ on the Zn surface, further extending laterally into a full covering without defects. Relying on the dissolution and the postcoordination effects, the 3D SF layer is used as an artificial solid electrolyte interphase to improve the Zn-anode performance. The uniformly distributed clusters within nanosized pores create a negatively charged nanochannel, accelerating zinc ion transfer and homogenizing zinc deposition. The 3D SF/Zn symmetric cells demonstrate high stability for over 3000 h at a current density of 5 mA cm-2.

5.
Mol Cancer ; 23(1): 178, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215288

RESUMO

Drug resistance in cancer cells significantly diminishes treatment efficacy, leading to recurrence and metastasis. A critical factor contributing to this resistance is the epigenetic alteration of gene expression via RNA modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I) editing. These modifications are pivotal in regulating RNA splicing, translation, transport, degradation, and stability. Governed by "writers," "readers," and "erasers," RNA modifications impact numerous biological processes and cancer progression, including cell proliferation, stemness, autophagy, invasion, and apoptosis. Aberrant RNA modifications can lead to drug resistance and adverse outcomes in various cancers. Thus, targeting RNA modification regulators offers a promising strategy for overcoming drug resistance and enhancing treatment efficacy. This review consolidates recent research on the role of prevalent RNA modifications in cancer drug resistance, with a focus on m6A, m1A, m5C, m7G, Ψ, and A-to-I editing. Additionally, it examines the regulatory mechanisms of RNA modifications linked to drug resistance in cancer and underscores the existing limitations in this field.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Processamento Pós-Transcricional do RNA , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Epigênese Genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , RNA/genética , RNA/metabolismo
6.
Phys Rev Lett ; 133(3): 034201, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39094135

RESUMO

The Atlantic circulation is a key component of the global ocean conveyor that transports heat and nutrients worldwide. Its likely weakening due to global warming has implications for climate and ecology. However, the expected changes remain largely uncertain as low-resolution climate models currently in use do not resolve small scales. Although the large-scale circulation tends to weaken uniformly in both the low-resolution and our high-resolution climate model version, we find that the small-scale circulation in the North Atlantic changes abruptly under global warming and exhibits pronounced spatial heterogeneity. Furthermore, the future Atlantic Ocean circulation in the high-resolution model version expands in conjunction with a sea ice retreat and strengthening toward the Arctic. Finally, the cutting-edge climate model indicates sensitive shifts in the eddies and circulation on regional scales for future warming and thus provides a benchmark for next-generation climate models that can get rid of parametrizations of unresolved scales.

7.
Nature ; 564(7735): 201-206, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542166

RESUMO

The El Niño-Southern Oscillation (ENSO) is the dominant and most consequential climate variation on Earth, and is characterized by warming of equatorial Pacific sea surface temperatures (SSTs) during the El Niño phase and cooling during the La Niña phase. ENSO events tend to have a centre-corresponding to the location of the maximum SST anomaly-in either the central equatorial Pacific (5° S-5° N, 160° E-150° W) or the eastern equatorial Pacific (5° S-5° N, 150°-90° W); these two distinct types of ENSO event are referred to as the CP-ENSO and EP-ENSO regimes, respectively. How the ENSO may change under future greenhouse warming is unknown, owing to a lack of inter-model agreement over the response of SSTs in the eastern equatorial Pacific to such warming. Here we find a robust increase in future EP-ENSO SST variability among CMIP5 climate models that simulate the two distinct ENSO regimes. We show that the EP-ENSO SST anomaly pattern and its centre differ greatly from one model to another, and therefore cannot be well represented by a single SST 'index' at the observed centre. However, although the locations of the anomaly centres differ in each model, we find a robust increase in SST variability at each anomaly centre across the majority of models considered. This increase in variability is largely due to greenhouse-warming-induced intensification of upper-ocean stratification in the equatorial Pacific, which enhances ocean-atmosphere coupling. An increase in SST variance implies an increase in the number of 'strong' EP-El Niño events (corresponding to large SST anomalies) and associated extreme weather events.


Assuntos
El Niño Oscilação Sul , Aquecimento Global , Efeito Estufa , Ecossistema , Modelos Teóricos , Dinâmica não Linear , Oceano Pacífico
8.
Nano Lett ; 23(9): 3887-3896, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37094227

RESUMO

Nafion, as the mostly used proton exchange membrane material in vanadium redox flow batteries (VRFBs), encounters serious vanadium permeation problems due to the large size difference between its anionic nanophase (3-5 nm) and cationic vanadium ions (∼0.6 nm). Bulk hybridization usually suppresses the vanadium permeation at the expense of proton conductivity since conventional additives tend to randomly agglomerate and damage the nanophase continuity from unsuitable sizes and intrinsic incompatibility. Here, we report the ionic-nanophase hybridization strategy of Nafion membranes by using fluorinated block copolymers (FBCs) and polyoxometalates (POMs) as supramolecular patching additives. The cooperative noncovalent interactions among Nafion, interfacial-active FBCs, and POMs can construct a 1 nm-shrunk ionic nanophase with abundant proton transport sites, preserved continuity, and efficient vanadium screeners, which leads to a comprehensive enhancement in proton conductivity, selectivity, and VRFB performance. These results demonstrate the intriguing potential of the supramolecular patching strategy in precisely tuning nanostructured electrolyte membranes for improved performance.

9.
Nano Lett ; 23(22): 10414-10422, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930644

RESUMO

Ion-conducting membranes (ICMs) with high selectivity are important components in redox flow batteries. However it is still a challenge to break the trade-off between ion conductivity and ion selectivity, which can be resolved by the regulation of their nanostructures. Here, polyoxometalate (POM)-hybridized block copolymers (BCPs) are used as self-assembled additives to construct proton-selective nanobarriers in the ICM matrix to improve the microscopic structures and macroscopic properties of ICMs. Benefiting from the co-assembly behavior of BCPs and POMs and their cooperative noncovalent interactions with the polymer matrix, ∼50 nm ellipsoidal functional nanoassemblies with hydrophobic vanadium-shielding cores and hydrophilic proton-conducting shells are constructed in the sulfonated poly(ether ether ketone) matrix, which leads to an overall enhancement of proton conductivity, proton selectivity, and cell performance. These results present a self-assembly route to construct functional nanostructures for the modification of polymer electrolyte membranes toward emerging energy technologies.

10.
Nano Lett ; 23(1): 42-50, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562792

RESUMO

Dendrite growth and side reactions of Zn metal anodes remain unresolved obstacles for practical application of aqueous Zn ion batteries. Herein, a two-dimensional (2D) organic-inorganic heterostructure with controlled thickness was constructed as a protective layer for a Zn metal anode. The reduction of uniformly distributed polyoxometalate in the layer causes a negative charge density gradient, which can accelerate zinc ion transfer, homogenize zinc deposition, and shield sulfates at the electrode interface, while the exposed hydrophobic alkyl chain of the layer can isolate the direct contact of water with the Zn anode. As a result of the synergetic effect, this 2D organic-inorganic heterostructure enables high Zn plating/stripping reversibility, with high average Coulombic efficiencies of 99.97% for 3700 cycles at 2 mA cm-2. Under high Zn utilization conditions, a high areal-capacity full cell with hundreds of cycles was demonstrated.


Assuntos
Metais , Zinco , Fontes de Energia Elétrica , Eletrodos , Água
11.
BMC Cancer ; 23(1): 120, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747161

RESUMO

BACKGROUND: Glioma is characterized by high morbidity, high mortality, and poor prognosis. Despite tremendous advances in the treatment of glioma, the prognosis of patients with glioma is still unsatisfactory. There is an urgent need to discover novel molecular markers that effectively predict prognosis in patients with glioma. The investigation of the role of WEE2-AS1 in various tumors is an emerging research field, but the biological function and prognostic value of WEE2-AS1 in glioma have rarely been reported. This study aimed to assess the value of WEE2-AS1 as a potential prognostic marker of glioma. METHODS: Gene expression (RNA-Seq) data of patients with glioma were extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. The Wilcoxon rank sum test was used to analyze the expression of WEE2-AS1 in the cells and tissues of glioma. The Kruskal-Wallis rank sum test, Wilcoxon rank sum test, and logistic regression were used to evaluate the relationship between clinical variables and expression of WEE2-AS1. Cox regression analysis and the Kaplan-Meier method were used to evaluate the prognostic factors in glioma. A nomogram based on Cox multivariate analysis was used to predict the impact of WEE2-AS1 on glioma prognosis. Gene Set Enrichment Analysis (GSEA) was used to identify key WEE2-AS1-associated signaling pathways. Spearman's rank correlation was used to elucidate the association between WEE2-AS1 expression and immune cell infiltration levels. RESULTS: We found that WEE2-AS1 was overexpressed in a variety of cancers, including glioma. High expression of WEE2-AS1 was associated with glioma progression. We determined that the expression of WEE2-AS1 might be an independent risk factor for the survival and prognosis of patients with glioma. We further observed that the mechanism of WEE2-AS1-mediated tumorigenesis involved neuroactive ligand-receptor interaction, cell cycle, and the infiltration of immune cells into the glioma microenvironment. CONCLUSION: These findings demonstrate that WEE2-AS1 is a promising biomarker for the diagnosis and prognosis of patients with glioma. An increased understanding of its effects on the regulation of cell growth may lead to the development of clinical applications that improve the prognostic status of patients with glioma.


Assuntos
Glioma , RNA Longo não Codificante , Humanos , Carcinogênese , Ciclo Celular , Glioma/genética , Pacientes , Prognóstico , RNA Longo não Codificante/genética , Microambiente Tumoral/genética
12.
Macromol Rapid Commun ; 44(18): e2300223, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37249561

RESUMO

Flexible electrolytes with solid self-supporting properties are highly desired in the fields of energy and electronics. However, traditional flexible electrolytes prepared by doping ionic liquids or salt solutions into a polymer matrix pose a risk of liquid component leakage during device operation. In this work, the development of supramolecular ionic network electrolytes using polyoxometalate nanoclusters as supramolecular crosslinkers to solidify bola-type zwitterionic liquids is reported. The resulting self-supporting electrolytes possess semi-solid features and show a high proton conductivity of 8.2 × 10-4 S cm-1 at low humidity (RH = 30%). Additionally, the electrolytes exhibit a typical plateau region in rheological tests, indicating that their dynamic network structures can contribute mechanical behavior similar to the entangled networks in covalent polymer materials. This work introduces a new paradigm for designing flexible solid electrolytes and expands the concept of reticular chemistry to noncrystalline systems.


Assuntos
Eletrólitos , Prótons , Íons , Polímeros
13.
J Acoust Soc Am ; 154(3): 1757-1769, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721402

RESUMO

In underwater acoustic (UWA) communications, channels often exhibit a clustered-sparse structure, wherein most of the channel impulse responses are near zero, and only a small number of nonzero taps assemble to form clusters. Several algorithms have used the time-domain sparse characteristic of UWA channels to reduce the complexity of channel estimation and improve the accuracy. Employing the clustered structure to enhance channel estimation performance provides another promising research direction. In this work, a deep learning-based channel estimation method for UWA orthogonal frequency division multiplexing (OFDM) systems is proposed that leverages the clustered structure information. First, a cluster detection model based on convolutional neural networks is introduced to detect the cluster of UWA channels. This method outperforms the traditional Page test algorithm with better accuracy and robustness, particularly in low signal-to-noise ratio conditions. Based on the cluster detection model, a cluster-aware distributed compressed sensing channel estimation method is proposed, which reduces the noise-induced errors by exploiting the joint sparsity between adjacent OFDM symbols and limiting the search space of channel delay spread. Numerical simulation and sea trial results are provided to illustrate the superior performance of the proposed approach in comparison with existing sparse UWA channel estimation methods.

14.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240203

RESUMO

The present study presents the tertiary assembly of a POM, peptide, and biogenic amine, which is a concept to construct new hybrid bio-inorganic materials for antibacterial applications and will help to promote the development of antivirus agents in the future. To achieve this, a Eu-containing polyoxometalate (EuW10) was first co-assembled with a biogenic amine of spermine (Spm), which improved both the luminescence and antibacterial effect of EuW10. Further introduction of a basic peptide from HPV E6, GL-22, induced more extensive enhancements, both of them being attributed to the cooperation and synergistic effects between the constituents, particularly the adaptive responses of assembly to the bacterial microenvironment (BME). Further intrinsic mechanism investigations revealed in detail that the encapsulation of EuW10 in Spm and further GL-22 enhanced the uptake abilities of EuW10 in bacteria, which further improved the ROS generation in BME via the abundant H2O2 involved there and significantly promoted the antibacterial effects.


Assuntos
Peroxidase , Compostos de Tungstênio , Compostos de Tungstênio/farmacologia , Peróxido de Hidrogênio , Peptídeos , Corantes , Antibacterianos/farmacologia
15.
Molecules ; 28(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175087

RESUMO

Ureidopyrimidone (UPy) is an important building block for constructing functional supramolecular polymers and soft materials based on their characteristic quadruple hydrogen bonds. While the evidence from the single-crystal X-ray diffraction data for the existence of linear hydrogen bonding has still been absent up to now. To obtain the crystals of UPy-containing molecules with high quality, enhanced rigidity and crystallinity are expected. Herein, an inorganic Anderson-Evans type cluster [Mn(OH)6Mo6O18]3-, which can provide suitable stiffness and charge, is used as a linker to covalently anchor two UPy units. The prepared organic-inorganic polyanion with three negative charges has a linear architecture, which is prone to form an infinite one-dimensional structure based on the supramolecular forces. The results indicate that the combination models of UPy units can be conveniently modulated by organic counter cations with different sizes, and therefore three unreported models are observed under various conditions. The present study gives a unique understanding of the intermolecular interactions in UPy-based supramolecular polymers and also provides a simple tuning method, which benefits the construction of functional materials and the adjustment of their properties.

16.
Pak J Med Sci ; 39(4): 1129-1133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492331

RESUMO

Objective: To explore the effect of clinical pharmacists participating in nutritional therapy for patients with acute cerebral infarction (ACI) complicated with dysphagia. Methods: This is a Clinical comparative study. A total of 82 patients with ACI complicated with dysphagia treated in Baoding No.1 Central Hospital from May 2021 to February 2022 were included as subjects. They were divided into control group (n= 40, without clinical pharmacists) and experimental group (n= 42, with clinical pharmacists) using a random number table. The effect of nutritional therapy and the incidence of adverse reactions were compared between the two groups. Results: In the experimental group, PALB and ALB were both higher than those in the control group on the seven and 14-day after treatment (p< 0.05), while HB was higher than that in the control group only on the 14-day after treatment (p< 0.05). After treatment for 14-day, MAMC and TSF in the experimental group were higher than those in the control group (p< 0.05), while NIHSS score was lower than that in the control group (p< 0.05). The incidence of adverse events in the experimental group was lower than that in the control group (p< 0.05). Conclusion: Pharmaceutical intervention in nutritional therapy for patients with ACI complicated with dysphagia has positive significance in further improving the nutritional status and nutritional indexes, enhancing the efficacy of drug treatment and reducing the risk of adverse events, and is worthy of promotion.

17.
Biomacromolecules ; 23(9): 3752-3765, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36001455

RESUMO

To enhance the efficacy of tumor therapy, the collection of functional components into a targeting system shows advantages over most homogeneous materials in inducing apoptosis of cancer cells. The security and targeting of therapeutic agents also require the effect combination of additional components. However, the construction of multifunctional composites in a simple system with intelligent cooperative responsiveness remains a challenge. Herein, a reduced polyanionic cluster (rP2W18) bearing the absorption at the near infrared (NIR) II region is used as a core carrier to bind the positively charged doxorubicin hydrochloride (DOX) through ionic interaction. To reduce the physiological toxicity, hyaluronic acid grafting ß-cyclodextrin side chains is used to cover the ionic complex through host-guest inclusion to DOX. When the nanocomposite is activated by local laser exposure, the final three-component therapeutic agent is demonstrated to present targeted photothermal conversion capability and chemodynamic activity together with chemotherapy. With the controlled release of DOX under the stimulation of mild acidity in the tumor region and photothermal effect, the exposed rP2W18 is aroused by hydrogen peroxide overexpressed in a tumor microenvironment to produce toxic reactive oxygen species, 1O2. This work presents an opportunity for the development of a nanocomposite in NIR-II photothermal/chemo-therapy and chemodynamic synergistic therapy.


Assuntos
Nanopartículas , Neoplasias , Ânions , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Ácido Hialurônico/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia , Polieletrólitos , Microambiente Tumoral
18.
Soft Matter ; 18(15): 2951-2958, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35348178

RESUMO

We successfully developed an antimicrobial assembly (Mo154/TK-14) using molybdenum-polyoxometalate and a positively charged peptide of TK-14. It was characterized and assayed using zeta-potential, dynamic light scattering (DLS), and TEM measurements. The Mo154/TK-14 assembly showed an enhanced 808 nm absorption and, therefore, improved the photothermal conversion efficiency of Mo154 (30.3%) to 38.6%. Consequently, in comparison to 5 µM Mo154 without irradiation, both the biofilm formation and bacterial viability of S. aureus were 24.6% and 20.2%, respectively, for the Mo154/TK-14 assembly; the biofilm formation and bacterial viability were further decreased to 7.7% and 4.4% under 808 nm irradiation, respectively. Therefore, the Mo154/TK-14 assembly reflects convincing antibacterial properties compared to Mo154. This is due to the synergistic effect between the peptide-binding enhanced 808 nm absorption and the improved PTT properties. The antimicrobial assembly offers a novel strategy for the rational design of light-responsive antibacterial materials.


Assuntos
Anti-Infecciosos , Staphylococcus aureus , Ânions , Antibacterianos/farmacologia , Biofilmes , Peptídeos/farmacologia , Polieletrólitos
19.
Inorg Chem ; 61(50): 20587-20595, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36459491

RESUMO

For fabricating a hydrogen-bonded framework with a stabilized hybrid structure for versatile functional properties, an inorganic polyanionic cluster that bears covalently grafted organic groups for hydrogen bond connection is synthesized. By modifying two guanine groups into a disklike polyoxometalate [Mn(OH)6Mo6O18]3- on both sides symmetrically, a polyanionic hybrid building block is obtained. With the cluster serving as a bridge and the grafted guanine unit serving as the binding sites, a polyoxometalate built-in hydrogen-bonded framework in the form of a square lattice shape within a two-dimensional plane has been fabricated as a single-layer assembly. In a further step, the counterion connection and hydrophilic/hydrophobic effect are used to drive the growth of layered framework assembly along the perpendicular direction. The resulting cluster-embedded framework possesses permanent porosity and inner-layer ionic characteristics after activation, which allows the framework to exhibit both high charge-/size-selective adsorption of organic cations and pH-controlled catalytic oxidation of methionine via the charged property.


Assuntos
Guanina , Hidrogênio , Ligação de Hidrogênio , Adsorção , Concentração de Íons de Hidrogênio
20.
Macromol Rapid Commun ; 43(14): e2200019, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35102624

RESUMO

Supramolecular gels are important soft materials with various applications, which are fabricated through hydrogen bonding, π-π stacking, electrostatic interactions, or host-guest interactions. Introducing functional groups, especially inorganic components, is an efficient strategy to obtain gels with robust architecture and high performance. Polyoxometalates (POMs), as a class of negatively-charged clusters, have defined structures and multiple interaction sites, resulting in their potential as building blocks for constructing POM-containing supramolecular gels. The introduction of POMs into gels not only provides strong driving forces for the formation of gels due to the characteristics of charged cluster and oxygen-rich surface, but also brings new properties sourcing from the unique electronic structures of POMs. Though many POM-containing gels have been reported, a comprehensive review is still absent. Herein, the concept of POM-containing gels is discussed, following with the design strategies and driving forces. To better understand the results in the literature, detailed examples, which are classified into several categories based on the types of organic components, are presented to illustrate the gelation process and gel structures. Moreover, applications of POM-containing gels in energy chemistry, sustainable chemistry, and other aspects are also reviewed, as well as the future developments of this field.


Assuntos
Géis , Ânions , Géis/química , Ligação de Hidrogênio , Polieletrólitos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA