Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 802
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(11): 1854-1866, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857825

RESUMO

Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in APOE4 human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglia/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo , Homeostase , Camundongos Transgênicos
2.
Proc Natl Acad Sci U S A ; 120(1): e2209990120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577069

RESUMO

Microglia play a critical role in the clearance of myelin debris, thereby ensuring functional recovery from neural injury. Here, using mouse model of demyelination following two-point LPC injection, we show that the microglial autophagic-lysosomal pathway becomes overactivated in response to severe demyelination, leading to lipid droplet accumulation and a dysfunctional and pro-inflammatory microglial state, and finally failed myelin debris clearance and spatial learning deficits. Data from genetic approaches and pharmacological modulations, via microglial Atg5 deficient mice and intraventricular BAF A1 administration, respectively, demonstrate that staged suppression of excessive autophagic-lysosomal activation in microglia, but not sustained inhibition, results in better myelin debris degradation and exerts protective effects against demyelination. Combined multi-omics results in vitro further showed that enhanced lipid metabolism, especially the activation of the linoleic acid pathway, underlies this protective effect. Supplementation with conjugated linoleic acid (CLA), both in vivo and in vitro, could mimic these effects, including attenuating inflammation and restoring microglial pro-regenerative properties, finally resulting in better recovery from demyelination injuries and improved spatial learning function, by activating the peroxisome proliferator-activated receptor (PPAR-γ) pathway. Therefore, we propose that pharmacological inhibition targeting microglial autophagic-lysosomal overactivation or supplementation with CLA could represent a potential therapeutic strategy in demyelinated disorders.


Assuntos
Doenças Desmielinizantes , Microglia , Camundongos , Animais , Microglia/metabolismo , Ácido Linoleico/metabolismo , Autofagia , Doenças Desmielinizantes/metabolismo , Regeneração
3.
Mol Psychiatry ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499656

RESUMO

Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus of understanding ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglia-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.

4.
Brain ; 147(1): 163-176, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740498

RESUMO

Microglia-mediated neuroinflammation contributes to acute demyelination in neuromyelitis optica spectrum disorders (NMOSD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in the CSF has been associated with microglial activation in several neurodegenerative diseases. However, the basis for this immune-mediated attack and the pathophysiological role of sTREM2 in NMOSD remain to be elucidated. Here, we performed Mendelian randomization analysis and identified a genetic association between increased CSF sTREM2 and NMOSD risk. CSF sTREM2 was elevated in patients with NMOSD and was positively correlated with neural injury and other neuroinflammation markers. Single-cell RNA sequencing of human macrophage/microglia-like cells in CSF, a proxy for microglia, showed that increased CSF sTREM2 was positively associated with microglial dysfunction in patients with NMOSD. Furthermore, we demonstrated that sTREM2 is a reliable biomarker of microglial activation in a mouse model of NMOSD. Using unbiased transcriptomic and lipidomic screens, we identified that excessive activation, overwhelmed phagocytosis of myelin debris, suppressed lipid metabolism and enhanced glycolysis underlie sTREM2-mediated microglial dysfunction, possibly through the nuclear factor kappa B (NF-κB) signalling pathway. These molecular and cellular findings provide a mechanistic explanation for the genetic association between CSF sTREM2 and NMOSD risk and indicate that sTREM2 could be a potential biomarker of NMOSD progression and a therapeutic target for microglia-mediated neuroinflammation.


Assuntos
Doença de Alzheimer , Neuromielite Óptica , Animais , Camundongos , Humanos , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Neuromielite Óptica/genética , Neuromielite Óptica/metabolismo , Doenças Neuroinflamatórias , Biomarcadores/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética
5.
Brain ; 147(2): 566-589, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776513

RESUMO

Cerebral malaria is the deadliest complication that can arise from Plasmodium infection. CD8 T-cell engagement of brain vasculature is a putative mechanism of neuropathology in cerebral malaria. To define contributions of brain endothelial cell major histocompatibility complex (MHC) class I antigen-presentation to CD8 T cells in establishing cerebral malaria pathology, we developed novel H-2Kb LoxP and H-2Db LoxP mice crossed with Cdh5-Cre mice to achieve targeted deletion of discrete class I molecules, specifically from brain endothelium. This strategy allowed us to avoid off-target effects on iron homeostasis and class I-like molecules, which are known to perturb Plasmodium infection. This is the first endothelial-specific ablation of individual class-I molecules enabling us to interrogate these molecular interactions. In these studies, we interrogated human and mouse transcriptomics data to compare antigen presentation capacity during cerebral malaria. Using the Plasmodium berghei ANKA model of experimental cerebral malaria (ECM), we observed that H-2Kb and H-2Db class I molecules regulate distinct patterns of disease onset, CD8 T-cell infiltration, targeted cell death and regional blood-brain barrier disruption. Strikingly, ablation of either molecule from brain endothelial cells resulted in reduced CD8 T-cell activation, attenuated T-cell interaction with brain vasculature, lessened targeted cell death, preserved blood-brain barrier integrity and prevention of ECM and the death of the animal. We were able to show that these events were brain-specific through the use of parabiosis and created the novel technique of dual small animal MRI to simultaneously scan conjoined parabionts during infection. These data demonstrate that interactions of CD8 T cells with discrete MHC class I molecules on brain endothelium differentially regulate development of ECM neuropathology. Therefore, targeting MHC class I interactions therapeutically may hold potential for treatment of cases of severe malaria.


Assuntos
Malária Cerebral , Camundongos , Humanos , Animais , Malária Cerebral/patologia , Malária Cerebral/prevenção & controle , Células Endoteliais/patologia , Encéfalo/patologia , Barreira Hematoencefálica/patologia , Linfócitos T CD8-Positivos , Endotélio/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
6.
Proc Natl Acad Sci U S A ; 119(12): e2119588119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290114

RESUMO

SignificanceAlthough most studies of the genetic regulation of genome stability involve an analysis of mutations within the coding sequences of genes required for DNA replication or DNA repair, recent studies in yeast show that reduced levels of wild-type enzymes can also produce a mutator phenotype. By whole-genome sequencing and other methods, we find that reduced levels of the wild-type DNA polymerase ε in yeast greatly increase the rates of mitotic recombination, aneuploidy, and single-base mutations. The observed pattern of genome instability is different from those observed in yeast strains with reduced levels of the other replicative DNA polymerases, Pol α and Pol δ. These observations are relevant to our understanding of cancer and other diseases associated with genetic instability.


Assuntos
DNA Polimerase II , Saccharomyces cerevisiae , DNA Polimerase II/metabolismo , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Mutação , Saccharomyces cerevisiae/metabolismo
7.
J Neurochem ; 168(5): 899-909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299375

RESUMO

Cofilactin rods (CARs), which are 1:1 aggregates of cofilin-1 and actin, lead to neurite loss in ischemic stroke and other disorders. The biochemical pathways driving CAR formation are well-established, but how these pathways are engaged under ischemic conditions is less clear. Brain ischemia produces both ATP depletion and glutamate excitotoxicity, both of which have been shown to drive CAR formation in other settings. Here, we show that CARs are formed in cultured neurons exposed to ischemia-like conditions: oxygen-glucose deprivation (OGD), glutamate, or oxidative stress. Of these conditions, only OGD produced significant ATP depletion, showing that ATP depletion is not required for CAR formation. Moreover, the OGD-induced CAR formation was blocked by the glutamate receptor antagonists MK-801 and kynurenic acid; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors GSK2795039 and apocynin; as well as an ROS scavenger. The findings identify a biochemical pathway leading from OGD to CAR formation in which the glutamate release induced by energy failure leads to activation of neuronal glutamate receptors, which in turn activates NADPH oxidase to generate oxidative stress and CARs.


Assuntos
Metabolismo Energético , Ácido Glutâmico , Neurônios , Animais , Células Cultivadas , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Ácido Glutâmico/metabolismo , Ratos , Trifosfato de Adenosina/metabolismo , Glucose/metabolismo , Glucose/deficiência , Actinas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , NADPH Oxidases/metabolismo , Acetofenonas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Maleato de Dizocilpina/farmacologia , Ácido Cinurênico/farmacologia , Ácido Cinurênico/metabolismo , Ratos Sprague-Dawley
8.
Small ; 20(15): e2308024, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992243

RESUMO

Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier-selective contacts, enable sputter processing, and prevent humidity ingress toward high-performance tandem perovskite solar cells. However, the interaction between perovskite materials and reactive ALD precursor limits the process parameters of ALD-SnOx film and requires an additional fullerene layer. Here, it demonstrates that reducing the water dose to deposit SnOx can reduce the degradation effect upon the perovskite underlayer while increasing the water dose to promote the oxidization can improve the electrical properties. Accordingly, a SnOx buffer layer with a gradient composition structure is designed, in which the compositionally varying are achieved by gradually increasing the oxygen source during the vapor deposition from the bottom to the top layer. In addition, the gradient SnOx structure with favorable energy funnels significantly enhances carrier extraction, further minimizing its dependence on the fullerene layer. Its broad applicability for different perovskite compositions and various textured morphology is demonstrated. Notably, the design boosts the efficiencies of perovskite/silicon tandem cells (1.0 cm2) on industrially textured Czochralski (CZ) silicon to a certified efficiency of 28.0%.

9.
Ann Neurol ; 93(4): 830-843, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36546684

RESUMO

OBJECTIVE: Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies. METHODS: We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice. Behavior tests were performed across ages. Animals were harvested at 11 months of age and TDP-43 overexpression-related neurodegeneration and gliosis were assessed. To further address the human relevance, we analyzed the association of APOE with TDP-43 pathology in 160 postmortem brains from autopsy-confirmed amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) in the Mayo Clinic Brain Bank. RESULTS: We found that TDP-43 overexpression induced motor function deficits, neuronal loss, and gliosis in the motor cortex, especially in APOE2 mice, with much milder or absent effects in APOE3, APOE4, or Apoe-KO mice. In the motor cortex of the ALS and FTLD-MND postmortem human brains, we found that the APOE2 allele was associated with more severe TDP-43-positive dystrophic neurites. INTERPRETATION: Our data suggest a genotype-specific effect of APOE on TDP-43 proteinopathy and neurodegeneration in the absence of AD pathology, with the strongest association seen with APOE2. ANN NEUROL 2023;93:830-843.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doença dos Neurônios Motores , Humanos , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Apolipoproteína E2/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E3 , Gliose/genética , Proteínas de Ligação a DNA/genética , Apolipoproteínas E/genética , Degeneração Lobar Frontotemporal/patologia
10.
Opt Express ; 32(11): 18618-18638, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859014

RESUMO

Fourier single pixel imaging utilizes pre-programmed patterns for laser spatial distribution modulation to reconstruct intensity image of the target through reconstruction algorithms. The approach features non-locality and high anti-interference performance. However, Poor image quality is induced when the target of interest is occluded in Fourier single pixel imaging. To address the problem, a deep learning-based image inpainting algorithm is employed within Fourier single pixel imaging to reconstruct partially obscured targets with high quality. It applies a distance-based segmentation method to segment obscured regions and the target of interest. Additionally, it utilizes an image inpainting network that combines multi-scale sparse convolution and transformer architecture, along with a reconstruction network that integrates Channel Attention Mechanism and Attention Gate modules to reconstruct complete and clear intensity images of the target of interest. The proposed method significantly expands the application scenarios and improves the imaging quality of Fourier single pixel imaging. Simulation and real-world experimental results demonstrate that the proposed method exhibits the high inpainting and reconstruction capacity in the conditions of hard occlusion and down-sampling.

11.
Opt Express ; 32(2): 2817-2838, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297801

RESUMO

Single photon imaging integrates advanced single photon detection technology with Laser Radar (LiDAR) technology, offering heightened sensitivity and precise time measurement. This approach finds extensive applications in biological imaging, remote sensing, and non-visual field imaging. Nevertheless, current single photon LiDAR systems encounter challenges such as low spatial resolution and a limited field of view in their intensity and range images due to constraints in the imaging detector hardware. To overcome these challenges, this study introduces a novel deep learning image stitching algorithm tailored for single photon imaging. Leveraging the robust feature extraction capabilities of neural networks and the richer feature information present in intensity images, the algorithm stitches range images based on intensity image priors. This innovative approach significantly enhances the spatial resolution and imaging range of single photon LiDAR systems. Simulation and experimental results demonstrate the effectiveness of the proposed method in generating high-quality stitched single-photon intensity images, and the range images exhibit comparable high quality when stitched with prior information from the intensity images.

12.
Microvasc Res ; 152: 104650, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38123064

RESUMO

RATIONALE: Numerous studies have established a robust association between bone morrow microvascular diseases and osteoporosis. This study sought to investigate the relationship between alterations in trans-cortical vessel (TCVs) and the onset of osteoporosis in various mouse models. METHODS: Aged mice, ovariectomized mice, and db/db mice, were utilized as osteoporosis models. TCVs in the tibia were detected using tissue clearing and light sheet fluorescence microscopy imaging. Femurs bone mass were analyzed using micro-CT scanning. Correlations between the number of TCVs and bone mass were analyzed using Pearson correlation analysis. RESULTS: All osteoporosis mouse models showed a significant reduction in the number of TCVs compared to the control group. Correlation analysis revealed a positive association between the number of TCVs and bone mass. TCVs were also expressed high levels of CD31 and EMCN proteins as type H vessels. CONCLUSIONS: This study underscores a consistent correlation between the number of TCVs and bone mass. Moreover, TCVs may serve as a potential biomarker for bone mass evaluation.


Assuntos
Osteoporose , Camundongos , Animais , Feminino , Humanos , Osteoporose/diagnóstico por imagem , Osteoporose/metabolismo , Densidade Óssea , Tíbia/diagnóstico por imagem , Tíbia/metabolismo , Ovariectomia
13.
Brain Behav Immun ; 115: 406-418, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37926132

RESUMO

Microglia are key players in maintaining brain homeostasis and exhibit phenotypic alterations in response to epileptic stimuli. However, it is still relatively unknown if these alterations are pro- or anti-epileptic. To unravel this dilemma, we employed chemogenetic manipulation of microglia using the artificial Gi-Dreadd receptor within a kainic acid (KA) induced murine seizure model. Our results indicate that acute Gi-Dreadd activation with Clozapine-N-Oxide can reduce seizure severity. Additionally, we observed increased interaction between microglia and neuronal soma, which correlated with reduced neuronal hyperactivity. Interestingly, prolonged activation of microglial Gi-Dreadds by repeated doses of CNO over 3 days, arrested microglia in a less active, homeostatic-like state, which associated with increased neuronal loss after KA induced seizures. RNAseq analysis revealed that prolonged activation of Gi-Dreadd interferes with interferon ß signaling and microglia proliferation. Thus, our findings highlight the importance of microglial Gi signaling not only during status epilepticus (SE) but also within later seizure induced pathology.


Assuntos
Microglia , Estado Epiléptico , Camundongos , Animais , Microglia/patologia , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente , Anticonvulsivantes , Encéfalo/patologia , Ácido Caínico/farmacologia
14.
Brain Behav Immun ; 119: 416-430, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636563

RESUMO

The role of microglia in triggering the blood-brain barrier (BBB) impairment and white matter damage after chronic cerebral hypoperfusion is unclear. Here we demonstrated that the vessel-adjacent microglia were specifically activated by the leakage of plasma low-density lipoprotein (LDL), which led to BBB breakdown and ischemic demyelination. Interestingly, we found that LDL stimulation enhanced microglial phagocytosis, causing excessive engulfment of myelin debris and resulting in an overwhelming lipid burden in microglia. Surprisingly, these lipid-laden microglia exhibited a suppressed profile of inflammatory response and compromised pro-regenerative properties. Microglia-specific knockdown of LDLR or systematic medication lowering circulating LDL-C showed protective effects against ischemic demyelination. Overall, our findings demonstrated that LDL-stimulated vessel-adjacent microglia possess a disease-specific molecular signature, characterized by suppressed regenerative properties, which is associated with the propagation of demyelination during ischemic white matter damage.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Lipoproteínas LDL , Microglia , Substância Branca , Microglia/metabolismo , Animais , Substância Branca/metabolismo , Substância Branca/patologia , Camundongos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Isquemia Encefálica/metabolismo , Barreira Hematoencefálica/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Fagocitose/fisiologia , Bainha de Mielina/metabolismo
15.
Mol Psychiatry ; 28(7): 2857-2871, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37365239

RESUMO

Chemogenetic approaches using Designer Receptors Exclusively Activated by Designer Drugs (DREADD, a family of engineered GPCRs) were recently employed in microglia. Here, we used Cx3cr1CreER/+:R26hM4Di/+ mice to express Gi-DREADD (hM4Di) on CX3CR1+ cells, comprising microglia and some peripheral immune cells, and found that activation of hM4Di on long-lived CX3CR1+ cells induced hypolocomotion. Unexpectedly, Gi-DREADD-induced hypolocomotion was preserved when microglia were depleted. Consistently, specific activation of microglial hM4Di cannot induce hypolocomotion in Tmem119CreER/+:R26hM4Di/+ mice. Flow cytometric and histological analysis showed hM4Di expression in peripheral immune cells, which may be responsible for the hypolocomotion. Nevertheless, depletion of splenic macrophages, hepatic macrophages, or CD4+ T cells did not affect Gi-DREADD-induced hypolocomotion. Our study demonstrates that rigorous data analysis and interpretation are needed when using Cx3cr1CreER/+ mouse line to manipulate microglia.


Assuntos
Microglia , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Macrófagos
16.
Mol Psychiatry ; 28(10): 4374-4389, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37280283

RESUMO

Activation of innate immunity in the brain is a prominent feature of Alzheimer's disease (AD). The present study investigated the regulation of innate immunity by wild-type serum injection in a transgenic AD mouse model. We found that treatment with wild-type mouse serum significantly reduced the number of neutrophils and microglial reactivity in the brains of APP/PS1 mice. Mimicking this effect, neutrophil depletion via Ly6G neutralizing antibodies resulted in improvements in AD brain functions. Serum proteomic analysis identified vascular endothelial growth factor-A (VEGF-A) and chemokine (C-X-C motif) ligand 1 (CXCL1) as factors enriched in serum samples, which are crucial for neutrophil migration and chemotaxis, leukocyte migration, and cell chemotaxis. Exogenous VEGF-A reversed amyloid ß (Aß)-induced decreases in cyclin-dependent kinase 5 (Cdk5) and increases in CXCL1 in vitro and blocked neutrophil infiltration into the AD brain. Endothelial Cdk5 overexpression conferred an inhibitory effect on CXCL1 and neutrophil infiltration, thereby restoring memory abilities in APP/PS1 mice. Our findings uncover a previously unknown link between blood-derived VEGF signaling and neutrophil infiltration and support targeting endothelial Cdk5 signaling as a potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular , Infiltração de Neutrófilos , Proteômica , Doença de Alzheimer/terapia , Transtornos da Memória , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Presenilina-1/genética
17.
PLoS Biol ; 19(3): e3001154, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33739978

RESUMO

Spinal microglia are highly responsive to peripheral nerve injury and are known to be a key player in pain. However, there has not been direct evidence showing that selective microglial activation in vivo is sufficient to induce chronic pain. Here, we used optogenetic approaches in microglia to address this question employing CX3CR1creER/+: R26LSL-ReaChR/+ transgenic mice, in which red-activated channelrhodopsin (ReaChR) is inducibly and specifically expressed in microglia. We found that activation of ReaChR by red light in spinal microglia evoked reliable inward currents and membrane depolarization. In vivo optogenetic activation of microglial ReaChR in the spinal cord triggered chronic pain hypersensitivity in both male and female mice. In addition, activation of microglial ReaChR up-regulated neuronal c-Fos expression and enhanced C-fiber responses. Mechanistically, ReaChR activation led to a reactive microglial phenotype with increased interleukin (IL)-1ß production, which is likely mediated by inflammasome activation and calcium elevation. IL-1 receptor antagonist (IL-1ra) was able to reverse the pain hypersensitivity and neuronal hyperactivity induced by microglial ReaChR activation. Therefore, our work demonstrates that optogenetic activation of spinal microglia is sufficient to trigger chronic pain phenotypes by increasing neuronal activity via IL-1 signaling.


Assuntos
Dor Crônica/etiologia , Microglia/fisiologia , Nervos Espinhais/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Channelrhodopsins/metabolismo , Dor Crônica/fisiopatologia , Feminino , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Optogenética/métodos , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Nervos Espinhais/fisiologia
18.
Anesth Analg ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345932

RESUMO

Neurovascular coupling (NVC) is the mechanism that drives the neurovascular response to neural activation, and NVC dysfunction has been implicated in various neurologic diseases. NVC is driven by (1) nonmetabolic feedforward mechanisms that are mediated by various signaling pathways and (2) metabolic feedback mechanisms that involve metabolic factors. However, the interplay between these feedback and feedforward mechanisms remains unresolved. We propose that feedforward mechanisms normally drive a swift, neural activation-induced regional cerebral blood flow (rCBF) overshoot, which floods the tissue beds, leading to local hypocapnia and hyperoxia. The feedback mechanisms are triggered by the resultant hypocapnia (not hyperoxia), which causes cerebral vasoconstriction in the neurovascular unit that counterbalances the rCBF overshoot and returns rCBF to a level that matches the metabolic activity. If feedforward mechanisms function improperly (eg, in a disease state), the rCBF overshoot, tissue-bed flooding, and local hypocapnia fail to occur or occur on a smaller scale. Consequently, the neural activation-related increase in metabolic activity results in local hypercapnia and hypoxia, both of which drive cerebral vasodilation and increase rCBF. Thus, feedback mechanisms ensure the brain milieu's stability when feedforward mechanisms are impaired. Our proposal integrates the feedforward and feedback mechanisms underlying NVC and suggests that these 2 mechanisms work like a fail-safe system, to a certain degree. We also discussed the difference between NVC and cerebral metabolic rate-CBF coupling and the clinical implications of our proposed framework.

19.
BMC Geriatr ; 24(1): 222, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439017

RESUMO

BACKGROUND: This study aimed to investigate the association of high-sensitivity C-reactive protein (hs-CRP) with incident frailty as well as its effects on pre-frailty progression and regression among middle-aged and older adults. METHODS: Based on the frailty index (FI) calculated with 41 items, 6890 eligible participants without frailty at baseline from China Health and Retirement Longitudinal Study (CHARLS) were categorized into health, pre-frailty, and frailty groups. Logistic regression models were used to estimate the longitudinal association between baseline hs-CRP and incident frailty. Furthermore, a series of genetic approaches were conducted to confirm the causal relationship between CRP and frailty, including Linkage disequilibrium score regression (LDSC), pleiotropic analysis, and Mendelian randomization (MR). Finally, we evaluated the association of hs-CRP with pre-frailty progression and regression. RESULTS: The risk of developing frailty was 1.18 times (95% CI: 1.03-1.34) higher in participants with high levels of hs-CRP at baseline than low levels of hs-CRP participants during the 3-year follow-up. MR analysis suggested that genetically determined hs-CRP was potentially positively associated with the risk of frailty (OR: 1.06, 95% CI: 1.03-1.08). Among 5241 participants with pre-frailty at baseline, we found pre-frailty participants with high levels of hs-CRP exhibit increased odds of progression to frailty (OR: 1.39, 95% CI: 1.09-1.79) and decreased odds of regression to health (OR: 0.84, 95% CI: 0.72-0.98) when compared with participants with low levels of hs-CRP. CONCLUSIONS: Our results suggest that reducing systemic inflammation is significant for developing strategies for frailty prevention and pre-frailty reversion in the middle-aged and elderly population.


Assuntos
Proteína C-Reativa , Fragilidade , Idoso , Humanos , Pessoa de Meia-Idade , Estudos Longitudinais , Proteína C-Reativa/genética , Fragilidade/diagnóstico , Fragilidade/epidemiologia , Fragilidade/genética , Estudos de Coortes , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA