Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Invest Dermatol ; 144(2): 378-386.e2, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37633457

RESUMO

Wound healing is a complex process involving phases of hemostasis, inflammation, proliferation, and remodeling. The regenerative process in the skin requires coordination between many regulators, including signaling molecules, transcription factors, and the epigenetic machinery. In this study, we show that chromatin regulators HDAC1 and LSD1, key components of the CoREST repressor complex, are upregulated in the regenerating epidermis during wound repair. We also show that corin, a synthetic dual inhibitor of the CoREST complex and HDAC1/LSD1 activities, significantly accelerates wound closure through enhanced re-epithelialization in a mouse tail wound model. Acetylated H3K9 (methylation of histone H3 at lysine 9) expression, a histone modification targeted by HDAC1, is increased in keratinocytes after topical treatment with 100 nM and 1 µM of corin. In vitro experiments demonstrate that corin promotes migration and inhibits the proliferation of human keratinocytes. Furthermore, expression levels of genes promoting keratinocyte migration, such as AREG, CD24, EPHB2, ITGAX, PTGS, SCT1, SERPINB2, SERPINE1, SLPI, SNAI2, and TWIST, increased in keratinocytes treated with corin. These data demonstrate that dual inhibition of class I histone deacetylases and LSD1 by corin may serve as a new approach for promoting wound re-epithelialization and provide a platform for further applications of corin for the treatment of chronic wounds.


Assuntos
Reepitelização , Pele , Camundongos , Animais , Humanos , Pele/lesões , Queratinócitos/metabolismo , Cicatrização/fisiologia , Modelos Animais de Doenças , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Movimento Celular
2.
J Clin Invest ; 134(6)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300709

RESUMO

Virtually all patients with BRAF-mutant melanoma develop resistance to MAPK inhibitors largely through nonmutational events. Although the epigenetic landscape is shown to be altered in therapy-resistant melanomas and other cancers, a specific targetable epigenetic mechanism has not been validated. Here, we evaluated the corepressor for element 1-silencing transcription factor (CoREST) epigenetic repressor complex and the recently developed bivalent inhibitor corin within the context of melanoma phenotype plasticity and therapeutic resistance. We found that CoREST was a critical mediator of the major distinct melanoma phenotypes and that corin treatment of melanoma cells led to phenotype reprogramming. Global assessment of transcript and chromatin changes conferred by corin revealed specific effects on histone marks connected to epithelial-mesenchymal transition-associated (EMT-associated) transcription factors and the dual-specificity phosphatases (DUSPs). Remarkably, treatment of BRAF inhibitor-resistant (BRAFi-R) melanomas with corin promoted resensitization to BRAFi therapy. DUSP1 was consistently downregulated in BRAFi-R melanomas, which was reversed by corin treatment and associated with inhibition of p38 MAPK activity and resensitization to BRAFi therapies. Moreover, this activity was recapitulated by the p38 MAPK inhibitor BIRB 796. These findings identify the CoREST repressor complex as a central mediator of melanoma phenotype plasticity and resistance to targeted therapy and suggest that CoREST inhibitors may prove beneficial for patients with BRAFi-resistant melanoma.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Correpressoras/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Fenótipo , Proteínas Quinases p38 Ativadas por Mitógeno
3.
J Neurosci ; 32(19): 6651-64, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22573687

RESUMO

Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is regulated by the interplay between extrinsic signals and intrinsic epigenetic determinants. In this study, we analyze the effect that the extracellular ligands sonic hedgehog (Shh) and bone morphogenetic protein 4 (BMP4), have on histone acetylation and gene expression in cultured OPCs. Shh treatment favored the progression toward oligodendrocytes by decreasing histone acetylation and inducing peripheral chromatin condensation. BMP4 treatment, in contrast, inhibited the progression toward oligodendrocytes and favored astrogliogenesis by favoring global histone acetylation and retaining euchromatin. Pharmacological treatment or silencing of histone deacetylase 1 (Hdac1) or histone deacetylase 2 (Hdac2) in OPCs did not affect BMP4-dependent astrogliogenesis, while it prevented Shh-induced oligodendrocyte differentiation and favored the expression of astrocytic genes. Transcriptional profiling of treated OPCs, revealed that BMP4-inhibition of oligodendrocyte differentiation was accompanied by increased levels of Wnt (Tbx3) and Notch-target genes (Jag1, Hes1, Hes5, Hey1, and Hey2), decreased recruitment of Hdac and increased histone acetylation at these loci. Similar upregulation of Notch-target genes and increased histone acetylation were observed in the corpus callosum of mice infused with BMP4 during cuprizone-induced demyelination. We conclude that Shh and Bmp4 differentially regulate histone acetylation and chromatin structure in OPCs and that BMP4 acts as a potent inducer of gene expression, including Notch and Wnt target genes, thereby enhancing the crosstalk among signaling pathways that are known to inhibit myelination and repair.


Assuntos
Proteína Morfogenética Óssea 4/fisiologia , Proteínas Hedgehog/fisiologia , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Oligodendroglia/fisiologia , Transcriptoma/genética , Acetilação , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Inativação Gênica , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/genética , Histonas/antagonistas & inibidores , Histonas/genética , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo , Ratos
4.
Epigenomics ; 15(3): 167-187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37020393

RESUMO

Epigenetics encompasses heritable, reversible gene expression patterns that do not arise from mutations in genomic DNA but, rather, are regulated by DNA methylation, histone modifications, RNA modifications and ncRNAs; and epigenetic dysregulation is increasingly recognized as a mechanism of neoplastic disease progression as well as resistance to cancer therapy. This review article focuses on epigenetic modifications implicated in the progression and therapeutic resistance of common cutaneous malignancies, including basal cell carcinoma, squamous cell carcinoma, T-cell lymphoma and malignant melanoma, with an emphasis on therapeutic strategies that may be used to target such disease-associated alterations.


Epigenetics involves the study of how genes can be turned on or off by factors that affect how these genes are packaged and regulated. In cancer, there are often epigenetic changes that contribute to the formation of tumors. Many of these epigenetic changes, some of which can be passed down through generations, increase the risk of skin cancers such as basal cell carcinoma, squamous cell carcinoma, T-cell lymphoma and malignant melanoma. Emerging therapies designed to target these epigenetic changes may be effective treatments for these types of skin cancers. Researchers are currently investigating how to best use these therapies to help the ever-increasing number of people with skin cancer.


Assuntos
Carcinoma Basocelular , Melanoma , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/patologia , Melanoma/genética , Epigênese Genética , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Metilação de DNA
5.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333415

RESUMO

Background: To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD post-mortem brain and mouse models. Objectives: The goal of this study was to determine whether total tau and pTau levels are altered in HD. Methods: Immunohistochemistry, cellular fractionations, and western blots were used to measure tau and pTau levels in a large cohort of HD and control post-mortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau in Htt Q111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. Results: Our results revealed that, while there was no difference in tau or pTau levels in HD PFC compared to controls, tau phosphorylated at S396 levels were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, tau or pTau levels were not altered in Htt Q111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. Conclusion: Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.

6.
J Huntingtons Dis ; 12(3): 267-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694372

RESUMO

BACKGROUND: To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD postmortem brain and mouse models. OBJECTIVE: The goal of this study was to determine whether total tau and pTau levels are altered in HD. METHODS: Immunohistochemistry, cellular fractionations, and western blots were used to measure total tau and pTau levels in a large cohort of HD and control postmortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau levels in HttQ111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. RESULTS: Our results revealed that, while there was no difference in total tau or pTau levels in HD PFC compared to controls, the levels of tau phosphorylated at S396 were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, total tau or pTau levels were not altered in HttQ111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. CONCLUSIONS: Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.


Assuntos
Doença de Huntington , Camundongos , Animais , Humanos , Doença de Huntington/metabolismo , Fosforilação , Serina/metabolismo , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo , Modelos Animais de Doenças
7.
JID Innov ; 2(2): 100090, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35199090

RESUMO

This past decade has seen tremendous advances in understanding the molecular pathogenesis of melanoma and the development of novel effective therapies for melanoma. Targeted therapies and immunotherapies that extend survival of patients with advanced disease have been developed; however, the vast majority of patients experience relapse and therapeutic resistance over time. Moreover, cellular plasticity has been demonstrated to be a driver of therapeutic resistance mechanisms in melanoma and other cancers, largely functioning through epigenetic mechanisms, suggesting that targeting of the cancer epigenetic landscape may prove a worthwhile endeavor to ensure durable treatment responses and cures. Here, we review the epigenetic alterations that characterize melanoma development, progression, and resistance to targeted therapies as well as epigenetic therapies currently in use and under development for melanoma and other cancers. We further assess the landscape of epigenetic therapies in clinical trials for melanoma and provide a framework for future advances in epigenetic therapies to circumvent the development of therapeutic resistance in melanoma.

8.
Clin Rev Allergy Immunol ; 63(3): 447-471, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36346551

RESUMO

Epigenetics is the study of heritable, reversible gene expression patterns that do not originate from alterations in the DNA sequence. Epigenetic modifications influence gene expression patterns and include DNA methylation, histone modifications, and gene regulation via non-coding RNAs. While the study of epigenetics has been most broadly applied to neoplastic diseases, the role of the epigenome in a wide range of disease processes including autoimmune, allergic, and inflammatory processes is increasingly being recognized. Recent advances in the study of the epigenome have led to novel insights into the pathogenesis and potential therapeutic targets of various pathologic entities including inflammatory diseases. In this review, we examine the nature of epigenetic modifications in several well-studied autoimmune, allergic, and/or inflammatory disorders of the skin including systemic lupus erythematosus, vitiligo, systemic sclerosis, alopecia areata, pemphigus, psoriasis, atopic dermatitis, keloidal scarring, and hidradenitis suppurativa with the aim to determine how such epigenetic changes may be targeted for therapeutic benefit.


Assuntos
Alopecia em Áreas , Psoríase , Humanos , Epigenômica , Epigênese Genética , Pele , Psoríase/genética
9.
BME Front ; 2021: 9860123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37849907

RESUMO

Objective and Impact Statement. Molecular signatures are needed for early diagnosis and improved treatment of metastatic melanoma. By high-resolution multimodal chemical imaging of human melanoma samples, we identify a metabolic reprogramming from pigmentation to lipid droplet (LD) accumulation in metastatic melanoma. Introduction. Metabolic plasticity promotes cancer survival and metastasis, which promises to serve as a prognostic marker and/or therapeutic target. However, identifying metabolic alterations has been challenged by difficulties in mapping localized metabolites with high spatial resolution. Methods. We developed a multimodal stimulated Raman scattering and pump-probe imaging platform. By time-domain measurement and phasor analysis, our platform allows simultaneous mapping of lipids and pigments at a subcellular level. Furthermore, we identify the sources of these metabolic signatures by tracking deuterium metabolites at a subcellular level. By validation with mass spectrometry, a specific fatty acid desaturase pathway was identified. Results. We identified metabolic reprogramming from a pigment-containing phenotype in low-grade melanoma to an LD-rich phenotype in metastatic melanoma. The LDs contain high levels of cholesteryl ester and unsaturated fatty acids. Elevated fatty acid uptake, but not de novo lipogenesis, contributes to the LD-rich phenotype. Monounsaturated sapienate, mediated by FADS2, is identified as an essential fatty acid that promotes cancer migration. Blocking such metabolic signatures effectively suppresses the migration capacity both in vitro and in vivo. Conclusion. By multimodal spectroscopic imaging and lipidomic analysis, the current study reveals lipid accumulation, mediated by fatty acid uptake, as a metabolic signature that can be harnessed for early diagnosis and improved treatment of metastatic melanoma.

10.
Glia ; 57(11): 1204-15, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19170181

RESUMO

Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by infiltration of T cells into the central nervous system (CNS) after compromise of the blood-brain barrier. A model used to mimic the disease in mice is experimental autoimmune encephalomyelitis (EAE). In this report, we examine the clinical and histopathological course of EAE in eNOS-deficient (eNOS-/-) mice to determine the role of nitric oxide (NO) derived from this enzyme in the disease progression. We find that eNOS-/- mice exhibit a delayed onset of EAE that correlates with delayed BBB breakdown, thus suggesting that NO production by eNOS underlies the T cell infiltration into the CNS. However, the eNOS-/- mice also eventually exhibit more severe EAE and delayed recovery, indicating that NO undertakes dual roles in MS/EAE, one proinflammatory that triggers disease onset, and the other neuroprotective that promotes recovery from disease exacerbation events.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Esclerose Múltipla/fisiopatologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico/metabolismo , Animais , Barreira Hematoencefálica , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/induzido quimicamente , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/fisiologia , Bainha de Mielina/fisiologia , Índice de Gravidade de Doença , Linfócitos T/fisiologia , Fatores de Tempo
11.
Cancer Res ; 79(10): 2649-2661, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30910803

RESUMO

Histone modifications, largely regulated by histone acetyltransferases (HAT) and histone deacetylases, have been recognized as major regulatory mechanisms governing human diseases, including cancer. Despite significant effort and recent advances, the mechanism by which the HAT and transcriptional coactivator p300 mediates tumorigenesis remains unclear. Here, we use a genetic and chemical approach to identify the microphthalmia-associated transcription factor (MITF) as a critical downstream target of p300 driving human melanoma growth. Direct transcriptional control of MITF by p300-dependent histone acetylation within proximal gene regulatory regions was coupled to cellular proliferation, suggesting a significant growth regulatory axis. Further analysis revealed forkhead box M1 (FOXM1) as a key effector of the p300-MITF axis driving cell growth that is selectively activated in human melanomas. Targeted chemical inhibition of p300 acetyltransferase activity using a potent and selective catalytic p300/CBP inhibitor demonstrated significant growth inhibitory effects in melanoma cells expressing high levels of MITF. Collectively, these data confirm the critical role of the p300-MITF-FOXM1 axis in melanoma and support p300 as a promising novel epigenetic therapeutic target in human melanoma. SIGNIFICANCE: These results show that MITF is a major downstream target of p300 in human melanoma whose expression is predictive of melanoma response to small-molecule inhibition of p300 HAT activity.


Assuntos
Proteína p300 Associada a E1A/genética , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Acetilação , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Senescência Celular/genética , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona Acetiltransferases/genética , Humanos
12.
Cancer Cell ; 36(5): 528-544.e10, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31631026

RESUMO

H3K27M mutations resulting in epigenetic dysfunction are frequently observed in diffuse intrinsic pontine glioma (DIPGs), an incurable pediatric cancer. We conduct a CRISPR screen revealing that knockout of KDM1A encoding lysine-specific demethylase 1 (LSD1) sensitizes DIPG cells to histone deacetylase (HDAC) inhibitors. Consistently, Corin, a bifunctional inhibitor of HDACs and LSD1, potently inhibits DIPG growth in vitro and in xenografts. Mechanistically, Corin increases H3K27me3 levels suppressed by H3K27M histones, and simultaneously increases HDAC-targeted H3K27ac and LSD1-targeted H3K4me1 at differentiation-associated genes. Corin treatment induces cell death, cell-cycle arrest, and a cellular differentiation phenotype and drives transcriptional changes correlating with increased survival time in DIPG patients. These data suggest a strategy for treating DIPG by simultaneously inhibiting LSD1 and HDACs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Glioma/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/mortalidade , Neoplasias do Tronco Encefálico/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glioma/genética , Glioma/mortalidade , Glioma/patologia , Código das Histonas/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Mutação , Ponte/patologia , RNA-Seq , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Diagn Ther ; 22(2): 203-218, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411301

RESUMO

Earlier identification of aggressive melanoma remains a goal in the field of melanoma research. With new targeted and immune therapies that have revolutionized the care of patients with melanoma, the ability to predict progression and monitor or predict response to therapy has become the new focus of research into biomarkers in melanoma. In this review, promising biomarkers are highlighted. These biomarkers have been used to diagnose melanoma as well as predict progression to advanced disease and response to therapy. The biomarkers take various forms, including protein expression at the level of tissue, genetic mutations of cancer cells, and detection of circulating DNA. First, a brief description is provided about the conventional tissue markers used to stage melanoma, including tumor depth. Next, protein biomarkers, which provide both diagnostic and prognostic information, are described. This is followed by a discussion of important genetic mutations, microRNA, and epigenetic modifications that can provide therapeutic and prognostic material. Finally, emerging serologic biomarkers are reviewed, including circulating melanoma cells and exosomes. Overall the goal is to identify biomarkers that aid in the earlier identification and improved treatment of aggressive melanoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Biomarcadores Tumorais/sangue , Humanos , Melanoma/diagnóstico , Melanoma/genética , Melanoma/patologia , Terapia de Alvo Molecular , Prognóstico , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Resultado do Tratamento , Melanoma Maligno Cutâneo
14.
Nat Commun ; 9(1): 53, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302039

RESUMO

Here we report corin, a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin potently targets the CoREST complex and shows more sustained inhibition of CoREST complex HDAC activity compared with entinostat. Cell-based experiments demonstrate that corin exhibits a superior anti-proliferative profile against several melanoma lines and cutaneous squamous cell carcinoma lines compared to its parent monofunctional inhibitors but is less toxic to melanocytes and keratinocytes. CoREST knockdown, gene expression, and ChIP studies suggest that corin's favorable pharmacologic effects may rely on an intact CoREST complex. Corin was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that may show preferential targeting of particular epigenetic regulatory complexes and offer unique therapeutic opportunities.


Assuntos
Benzamidas/farmacologia , Proteínas Correpressoras/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Melanoma/tratamento farmacológico , Proteínas do Tecido Nervoso/antagonistas & inibidores , Piridinas/farmacologia , Tranilcipromina/farmacologia , Idoso , Animais , Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Correpressoras/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Histona Desacetilases/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
15.
BMC Immunol ; 8: 10, 2007 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-17634104

RESUMO

BACKGROUND: Myelin Oligodendrocyte Glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) is the most commonly used mouse model for multiple sclerosis (MS). During the of progression of EAE, microglia, the immunocompetent cells of the brain, become activated and accumulate around demyelinated lesions. Microglial activation is mediated by the extracellular protease tissue Plasminogen Activator (tPA), and mice lacking tPA display altered EAE progression. In this study, we have used pharmacological inhibitors and stimulators of microglial/macrophage activation to examine the temporal requirement for microglial activation in EAE progression and to determine whether such approaches might potentially be of therapeutic value. RESULTS: Intervention using the tripeptide macrophage/microglia inhibitory factor MIF (TKP) and the tetrapeptide macrophage/microglial stimulator tuftsin (TKPR) attenuated EAE symptoms and revealed that the timing of macrophage/microglial activation is critical for the clinical outcome of EAE. We show that the disease progression can potentially be manipulated favorably at early stages by altering the timing of microglial activation, which in turn alters the systemic immune response to favor upregulation of T helper cell 2 genes that promote recovery from EAE. CONCLUSION: Preventative and therapeutic modulation of macrophage/microglial activity significantly alters the outcome of EAE at symptomatic stages. Specific molecular targets have been identified that represent potential avenues of exploration for the treatment and prevention of MS.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Fatores Inibidores da Migração de Macrófagos/administração & dosagem , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Tuftsina/administração & dosagem , Animais , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/induzido quimicamente , Feminino , Imunização/métodos , Fatores Imunológicos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/imunologia , Microglia/metabolismo , Proteínas da Mielina , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Glicoproteína Associada a Mielina/química , Glicoproteína Associada a Mielina/imunologia , Glicoproteína Mielina-Oligodendrócito , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Tuftsina/metabolismo
16.
PLoS One ; 7(4): e34933, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529957

RESUMO

Multiple sclerosis (MS) is a demyelinating autoimmune disease mediated by infiltration of T cells into the central nervous system after compromise of the blood-brain barrier. We have previously shown that administration of tuftsin, a macrophage/microglial activator, dramatically improves the clinical course of experimental autoimmune encephalomyelitis (EAE), a well-established animal model for MS. Tuftsin administration correlates with upregulation of the immunosuppressive Helper-2 T cell (Th2) cytokine transcription factor GATA-3. We now show that tuftsin-mediated microglial activation results in shifting microglia to an anti-inflammatory phenotype. Moreover, the T cell phenotype is shifted towards immunoprotection after exposure to tuftsin-treated activated microglia; specifically, downregulation of pro-inflammatory Th1 responses is triggered in conjunction with upregulation of Th2-specific responses and expansion of immunosuppressive regulatory T cells (Tregs). Finally, tuftsin-shifted T cells, delivered into animals via adoptive transfer, reverse the pathology observed in mice with established EAE. Taken together, our findings demonstrate that tuftsin decreases the proinflammatory environment of EAE and may represent a therapeutic opportunity for treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Fatores Imunológicos/administração & dosagem , Tuftsina/administração & dosagem , Transferência Adotiva , Animais , Meios de Cultivo Condicionados , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/terapia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Terapia de Imunossupressão , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Fenótipo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA