Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38344864

RESUMO

Bacteriophages can help the treatment of bacterial infections yet require in-silico models to deal with the great genetic diversity between phages and bacteria. Despite the tolerable prediction performance, the application scope of current approaches is limited to the prediction at the species level, which cannot accurately predict the relationship of phages across strain mutants. This has hindered the development of phage therapeutics based on the prediction of phage-bacteria relationships. In this paper, we present, PB-LKS, to predict the phage-bacteria interaction based on local K-mer strategy with higher performance and wider applicability. The utility of PB-LKS is rigorously validated through (i) large-scale historical screening, (ii) case study at the class level and (iii) in vitro simulation of bacterial antiphage resistance at the strain mutant level. The PB-LKS approach could outperform the current state-of-the-art methods and illustrate potential clinical utility in pre-optimized phage therapy design.


Assuntos
Infecções Bacterianas , Bacteriófagos , Humanos , Bacteriófagos/genética , Bactérias/genética
2.
Small ; : e2308858, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618927

RESUMO

Although TiNb2O7 (TNO) with comparable operating potential and ideal theoretical capacity is considered to be the most ideal replacement for negative Li4Ti5O12 (LTO), the low ionic and electronic conductivity still limit its practical application as satisfactory anode for lithium-ion batteries (LIBs) with high-power density. Herein, TNO nanoparticles modified by Cerium (Ce) with outstanding electrochemical performance are synthesized. The successful introduction of Ce3+ in the lattice leads to increased interplanar spacing, refined grain size, more oxygen vacancy, and a smaller lithium diffusion barrier, which are conducive to improve conductivity of both Li+ and electrons. As a result, the modified TNO reaches high reversible capacity of 256.0 mA h g-1 at 100 mA g-1 after 100 cycles, and 183.0 mA h g-1 even under 3200 mA g-1. In particular, when the temperature drops to -20 °C, the cell undergoing 1500 cycles at a high current density of 500 mA g-1 can still reach 89.7 mA h g-1, corresponding to a capacity decay rate per cycle of only 0.033%. This work provides a new way to improve the electrochemical properties of alternative anodes for LIBs at extreme temperature.

3.
Bioorg Med Chem Lett ; 104: 129725, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555073

RESUMO

Natural product structures have long provided valuable pharmacophores and even candidates for drug discovery. Tanshinone scaffold showed moderately inhibitory activity in NLRP3 inflammasome/IL-1ß pathway. Herein, we designed a series of derivatives on different regions of Tanshinone IIA (TNA) scaffold. The biological evaluation identified compound T10, a scaffold hybrid of TNA and salicylic acid, as a potent NLRP3 inflammasome inhibitor. Mechanistically, T10 inhibits the production of ROS and prevents NLRP3 inflammasome-dependent IL-1ß production. In addition, treatment with T10 significantly attenuated inflammatory response in DSS-induced peritonitis. Our work describes a potential tanshinone-based derivative, which needs to be further structurally optimized as NLRP3 inflammasome inhibitors for treating inflammatory disorders.


Assuntos
Abietanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Abietanos/síntese química , Abietanos/química , Abietanos/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Desenho de Fármacos , Linhagem Celular Tumoral , Animais , Camundongos
4.
Sci Total Environ ; 924: 171586, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461975

RESUMO

Developing efficient and low-cost photocatalytic materials is essential for removing polychlorinated biphenyls (PCBs). In this work, the photodegradation process of fourteen representative polychlorinated biphenyls (PCBs) in both water/nitrogen-doped SiO2 (N-SiO2) and air/N-SiO2 systems was studied. The photodegradation kinetics of PCBs is consistent with the pseudo-first-order kinetic equation. The variation in the degradation effects of different PCBs in the two systems is primarily related to the position of the Cl substituent and the effective absorption wavelength range of PCBs. A total of fourteen intermediates for 4'-Dichlorobiphenyl (PCB-15), 2,2',4,4',6,6'-Hexachlorobiphenyl (PCB-155), and 2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl (PCB-209) generated from four reaction pathways were identified based on both mass spectrometry analysis and theoretical calculations. Using the values of lnk (k denotes pseudo-first-order kinetic constants) for the 11 PCBs in the training set and the calculated molecular and structural parameters, quantitative structure-activity relationship (QSAR) models for the two systems were constructed by using multiple linear regression (MLR) method to better understand the factors affecting the photodegradation rate of PCBs. The QSAR equations were obtained with Cl atom substitution at position 3 (N3) as the main parameter, which were lnk = -1.98 - 0.19 N3 for the water/N-SiO2 system and lnk = -1.56 - 0.34 N3 for the air/N-SiO2 system, with the correlation coefficient (R2) of 0.66 and 0.73, leave-one-out cross-validation (Q2LOO) of 0.51 and 0.59, respectively, and bootstrapping validation coefficients (Q2BOOT) values of both 0.74, confirming that the models were well fitted and showed high robustness and prediction ability. This study provides valuable insights into photocatalytic degradation studies of PCBs.

5.
Environ Pollut ; 346: 123621, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402942

RESUMO

Considering that waste incineration fly ash is the main carrier of dioxins and can migrate over long distances in the atmosphere, it is of great significance to study the photochemical transformation behavior of dioxins on the surface of fly ash. In this work, 2-chlorodibenzo-p-dioxin (2-CDD) was selected to conduct a systematic photochemical study. The influence of various factors on the photodegradation of 2-CDD were first explored, and the results showed that small particle size of fly ash, low concentration of 2-CDD and appropriate level of humidity were more conducive to photodegradation, with the highest degradation percentage reaching 76%-84%. The components of fly ash (Zn (Ⅱ), Al (Ⅲ), Cu (Ⅱ) and SiO2) also had a certain promoting effect on the degradation of 2-CDD, which increases the degradation efficiency by 10%-20%, because they could act as effective photocatalysts to produce free radicals for reaction. With a higher total light exposure intensity, natural light environments led to a more complete degradation of 2-CDD than laboratory Xe lamp irradiation (90% degradation Vs. 79% degradation). Based on chemical probe and radical quenching experiment, hydroxyl radical also contributed to 2-CDD photodegradation on fly ash. A total of 16 intermediate products were detected by mass spectrometry analysis, and four initial reaction pathways of 2-CDD were speculated in the process, including dechlorination, ether bond cleavage, hydroxyl substitution, and hydroxyl addition. According to the results of density functional theory calculation, the reaction channels of ether bond cleavage and •OH attack were determined. The toxicity assessment software tool (TEST) was used to assess the toxicity and bioconcentration coefficient of reaction products, and it was found that the overall toxicity of the photodegradation products was reduced. This study would provide new insights into the environmental fate of dioxins during long-range atmospheric migration process.


Assuntos
Dioxinas , Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Dioxinas/análise , Cinza de Carvão/análise , Fotólise , Dióxido de Silício , Incineração/métodos , Éteres , Eliminação de Resíduos/métodos , Carbono/química , Metais Pesados/análise
6.
Microorganisms ; 12(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065259

RESUMO

Flower endophytic fungi play a major role in plant reproduction, stress resistance, and growth and development. However, little is known about how artificial cultivation affects the endophytic fungal community found in the tepals of rare horticultural plants. In this research, we used high-throughput sequencing technology combined with bioinformatics analysis to reveal the endophytic fungal community of tepals in Lirianthe delavayi and the effects of artificial cultivation on the community composition and function of these plants, using tepals of L. delavayi from wild habitat, cultivated campus habitat, and cultivated field habitat as research objects. The results showed that the variety of endophytic fungi in the tepals of L. delavayi was abundant, with a total of 907 Amplicon sequencing variants (ASVs) obtained from all the samples, which were further classified into 4 phyla, 23 classes, 51 orders, 97 families, 156 genera, and 214 species. We also found that artificial cultivation had a significant impact on the community composition of endophytic fungi. Although there was no significant difference at the phylum level, with Ascomycota and Basidiomycota being the main phyla, there were significant differences in dominant and unique genera. Artificial cultivation has led to the addition of new pathogenic fungal genera, such as Phaeosphaeria, Botryosphaeria, and Paraconiothyrium, increasing the risk of disease in L. delavayi. In addition, the abundance of the endophytic fungus Rhodotorula, which is typical in plant reproductive organs, decreased. Artificial cultivation also altered the metabolic pathways of endophytic fungi, decreasing their ability to resist pests and diseases and reducing their ability to reproduce. A comparison of endophytic fungi in tepals and leaves revealed significant differences in community composition and changes in the endophytic diversity caused by artificial cultivation. To summarize, our results indicate that endophytic fungi in the tepals of L. delavayi mainly consist of pathogenic and saprophytic fungi. Simultaneously, artificial cultivation introduces a great number of pathogenic fungi that alter the metabolic pathways associated with plant resistance to disease and pests, as well as reproduction, which can increase the risk of plant disease and reduce plant reproductive capacity. Our study provides an important reference for the conservation and breeding of rare horticultural plants.

7.
World J Clin Cases ; 12(1): 86-94, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38292647

RESUMO

BACKGROUND: The obesity rate of adolescents is gradually increasing, which seriously affects their mental health, and sleep plays an important role in adolescent obesity. AIM: To investigate the relationship between sleep rhythm and obesity among adolescents and further explores the interactive effect of sleep rhythm and gender on adolescent obesity, providing a theoretical basis for developing interventions for adolescent obesity. METHODS: Research data source Tianjin Mental Health Promotion Program for Students. From April to June 2022, this study selected 14201 students from 13 middle schools in a certain district of Tianjin as the research subject using the convenient cluster sampling method. Among these students, 13374 accepted and completed the survey, with an effective rate of 94.2%.The demographic data and basic information of adolescents, such as height and weight, were collected through a general situation questionnaire. The sleep rhythm of adolescents was evaluated using the reduced version of the morningness-eveningness questionnaire. RESULTS: A total of 13374 participants (6629 females, accounting for 49.56%; the average age is 15.21 ± 1.433 years) were analyzed. Among them, the survey showed that 2942 adolescent were obesity, accounting for 22% and 2104 adolescent were overweight, accounting for 15.7%. Among them, 1692 male adolescents are obese, with an obesity rate of 25.1%, higher than 18.9% of female adolescents. There is a statistically significant difference between the three groups (χ2 = 231.522, P < 0.000). The obesity group has the smallest age (14.94 ± 1.442 years), and there is a statistical difference in age among the three groups (F = 69.996, P < 0.000).Obesity rates are higher among individuals who are not-only-child, have residential experience within six months, have family economic poverty, and have evening-type sleep (P < 0.05). Logistic regression analysis shows a correlation between sleep rhythm and adolescent obesity. Evening-type sleep rhythm can increase the risk of obesity in male adolescents [1.250 (1.067-1.468)], but the effect on female obesity is not remarkable. Further logistic regression analysis in the overall population demonstrates that the interaction between evening-type sleep rhythm and the male gender poses a risk of adolescent obesity [1.122 (1.043-1.208)]. CONCLUSION: Among adolescents, the incidence of obesity in males is higher than in females. Evening-type sleep rhythm plays an important role in male obesity but has no significant effect on female obesity. Progressive analysis suggests an interactive effect of sleep rhythm and gender on adolescent obesity, and the combination of evening-type sleep and the male gender promotes the development of adolescent obesity. In formulating precautions against adolescent obesity, obesity in male adolescents with evening-type sleep should be a critical concern.

8.
Microbiol Spectr ; 12(2): e0390023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132570

RESUMO

The emergence of antibiotic-resistant bacteria (ARB) caused by the overuse of antibiotics severely threatens human health. Hospital sewage may be a key transmission hub for ARB. However, the complex link between the microbiome and resistomeresistance in hospital sewage remains unclear. In this study, metagenomic assembly and binning methods were used to investigate the microbial community, resistome, and association of antibiotic resistance genes (ARGs) with ARB in sewage from 10 representative sites (outpatient building, surgery building, internal medicine buildings [IMB1-4], staff dormitory, laboratory animal building, tuberculosis building [TBB], and hospital wastewater treatment plant) of a hospital in Shanghai from June 2021 to February 2022. A total of 252 ARG subtypes, belonging to 17 antibiotic classes, were identified. The relative abundance of KPC-2 was higher at IMBs and TBB than at other sites. Of the ARG-carrying contigs, 47.3%-62.6% were associated with mobile genetic elements, and the proportion of plasmid-associated ARGs was significantly higher than that of chromosome-associated ARGs. Although a similar microbiome composition was shared, certain bacteria were enriched at different sites. Potential pathogens Enterococcus B faecium and Klebsiella pneumoniae were primarily enriched in IMB2 and IMB4, respectively. The same ARGs were identified in diverse bacterial hosts (especially pathogenic bacteria), and accordingly, the latter possessed multiple ARGs. Furthermore, gene flow was frequently observed in the sewage of different buildings. The results provide crucial information on the characterization profiles of resistomes in hospital sewage in Shanghai.IMPORTANCEEnvironmental antibiotic resistance genes (ARGs) play a critical role in the emergence and spread of antimicrobial resistance, which poses a global health threat. Wastewater from healthcare facilities serves as a significant reservoir for ARGs. Here, we characterized the microbial community along with the resistome (comprising all antibiotic resistance genes) in wastewater from a specialized hospital for infectious diseases in Shanghai. Potential pathogenic bacteria (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus B faecium) were frequently detected in hospital wastewater and carried multiple ARGs. A complex link between microbiome and resistome was observed in the wastewater of this hospital. The monitoring of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater might be of great significance for preventing the spread of ARB.


Assuntos
Doenças Transmissíveis , Microbiota , Animais , Humanos , Esgotos/microbiologia , Águas Residuárias , Genes Bacterianos , Antibacterianos , Antagonistas de Receptores de Angiotensina , China , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética , Doenças Transmissíveis/genética , Hospitais
9.
J Colloid Interface Sci ; 671: 67-77, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38788425

RESUMO

With the wide application of electromagnetic waves in national defense, communication, navigation and home appliances, the electromagnetic pollution problem is becoming more and more prominent. Therefore, high-performance, and low-density composite wave-absorbing materials have attracted much attention. In this paper, three-dimensional (3D) network structures of flower-like 1T/2H Molybdenum disulfide nanosheets anchored to carbon fibers (1T/2H MoS2/CNFs) were prepared by electrostatic spinning technique and calcination process. The morphology and electromagnetic wave absorption properties were tuned by changing the content of flower-like MoS2. The optimized 1T/2H MoS2/CNFs composite exhibits superior electromagnetic wave absorption with minimum reflection (RLmin) of -42.26 dB and effective absorption bandwidth (EAB) of 6.48 GHz at 2.5 mm. Multi-facts contribute to the super performance. First, the uniquely designed nanosheet and 3D interconnected networks leads to multiple reflection and scattering of electromagnetic waves, which promotes the attenuation of electromagnetic waves. Second, the propriate content of CNFs and MoS2 with different phase regulates its impedance matching characteristic. Third, Numerous heterogeneous interfaces existed between CNFs and MoS2, 1T and 2H MoS2 phase results in interface polarization. Besides, the 1T/2H MoS2 rich in defects induces defect polarization, improving the dielectric loss. Furthermore, the electromagnetic wave absorption performance was proved via radar reflectance cross section simulation. This work illustrates 1T/2H MoS2/CNFs is a promising material for electromagnetic absorption with wide bandwidth, strong absorption, low density, and high thermal stability.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39119826

RESUMO

The authors report a case of primary aldosteronism (PA) with postoperative elevation of aldosterone treated effectively by finerenone. The patient was a hypertensive man with a 30-year history of hypertension and sustained an acute myocardial infarction 5 years ago. Bilateral adrenal nodules with hyperplasia were detected and PA was confirmed. His blood potassium, direct renin concentration, and aldosterone level returned to normal after surgery of right adrenalectomy. However, 1 year after surgery, he experienced a decrease in blood potassium and an increase in aldosterone. A saline infusion test revealed an aldosterone level of 124.47 pg/mL. The patient consented to treatment with finerenone. His aldosterone and potassium levels and blood pressure have been controlled well during follow-up. This case highlights the need to screen for secondary hypertension as early as possible. Finerenone may be effective for patients with PA who are not candidates for surgery and those not relieved after surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA