Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 590(7847): 594-599, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627812

RESUMO

Natural load-bearing materials such as tendons have a high water content of about 70 per cent but are still strong and tough, even when used for over one million cycles per year, owing to the hierarchical assembly of anisotropic structures across multiple length scales1. Synthetic hydrogels have been created using methods such as electro-spinning2, extrusion3, compositing4,5, freeze-casting6,7, self-assembly8 and mechanical stretching9,10 for improved mechanical performance. However, in contrast to tendons, many hydrogels with the same high water content do not show high strength, toughness or fatigue resistance. Here we present a strategy to produce a multi-length-scale hierarchical hydrogel architecture using a freezing-assisted salting-out treatment. The produced poly(vinyl alcohol) hydrogels are highly anisotropic, comprising micrometre-scale honeycomb-like pore walls, which in turn comprise interconnected nanofibril meshes. These hydrogels have a water content of 70-95 per cent and properties that compare favourably to those of other tough hydrogels and even natural tendons; for example, an ultimate stress of 23.5 ± 2.7 megapascals, strain levels of 2,900 ± 450 per cent, toughness of 210 ± 13 megajoules per cubic metre, fracture energy of 170 ± 8 kilojoules per square metre and a fatigue threshold of 10.5 ± 1.3 kilojoules per square metre. The presented strategy is generalizable to other polymers, and could expand the applicability of structural hydrogels to conditions involving more demanding mechanical loading.

2.
J Nanobiotechnology ; 22(1): 245, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735921

RESUMO

BACKGROUND: The general sluggish clearance kinetics of functional inorganic nanoparticles tend to raise potential biosafety concerns for in vivo applications. Renal clearance is a possible elimination pathway for functional inorganic nanoparticles delivered through intravenous injection, but largely depending on the surface physical chemical properties of a given particle apart from its size and shape. RESULTS: In this study, three small-molecule ligands that bear a diphosphonate (DP) group, but different terminal groups on the other side, i.e., anionic, cationic, and zwitterionic groups, were synthesized and used to modify ultrasmall Fe3O4 nanoparticles for evaluating the surface structure-dependent renal clearance behaviors. Systematic studies suggested that the variation of the surface ligands did not significantly increase the hydrodynamic diameter of ultrasmall Fe3O4 nanoparticles, nor influence their magnetic resonance imaging (MRI) contrast enhancement effects. Among the three particle samples, Fe3O4 nanoparticle coated with zwitterionic ligands, i.e., Fe3O4@DMSA, exhibited optimal renal clearance efficiency and reduced reticuloendothelial uptake. Therefore, this sample was further labeled with 99mTc through the DP moieties to achieve a renal-clearable MRI/single-photon emission computed tomography (SPECT) dual-modality imaging nanoprobe. The resulting nanoprobe showed satisfactory imaging capacities in a 4T1 xenograft tumor mouse model. Furthermore, the biocompatibility of Fe3O4@DMSA was evaluated both in vitro and in vivo through safety assessment experiments. CONCLUSIONS: We believe that the current investigations offer a simple and effective strategy for constructing renal-clearable nanoparticles for precise disease diagnosis.


Assuntos
Rim , Imageamento por Ressonância Magnética , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Imageamento por Ressonância Magnética/métodos , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Ligantes , Rim/diagnóstico por imagem , Rim/metabolismo , Linhagem Celular Tumoral , Meios de Contraste/química , Feminino , Camundongos Endogâmicos BALB C , Humanos , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Nanopartículas de Magnetita/química , Nanopartículas/química
3.
Proc Natl Acad Sci U S A ; 118(18)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903253

RESUMO

The inhibition of condensation freezing under extreme conditions (i.e., ultra-low temperature and high humidity) remains a daunting challenge in the field of anti-icing. As water vapor easily condensates or desublimates and melted water refreezes instantly, these cause significant performance decrease of most anti-icing surfaces at such extreme conditions. Herein, inspired by wheat leaves, an effective condensate self-removing solar anti-icing/frosting surface (CR-SAS) is fabricated using ultrafast pulsed laser deposition technology, which exhibits synergistic effects of enhanced condensate self-removal and efficient solar anti-icing. The superblack CR-SAS displays superior anti-reflection and photothermal conversion performance, benefiting from the light trapping effect in the micro/nano hierarchical structures and the thermoplasmonic effect of the iron oxide nanoparticles. Meanwhile, the CR-SAS displays superhydrophobicity to condensed water, which can be instantly shed off from the surface before freezing through self-propelled droplet jumping, thus leading to a continuously refreshed dry area available for sunlight absorption and photothermal conversion. Under one-sun illumination, the CR-SAS can be maintained ice free even under an ambient environment of -50 °C ultra-low temperature and extremely high humidity (ice supersaturation degree of ∼260). The excellent environmental versatility, mechanical durability, and material adaptability make CR-SAS a promising anti-icing candidate for broad practical applications even in harsh environments.

4.
Proc Natl Acad Sci U S A ; 117(21): 11240-11246, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393646

RESUMO

Ice accumulation causes various problems in our daily life for human society. The daunting challenges in ice prevention and removal call for novel efficient antiicing strategies. Recently, photothermal materials have gained attention for creating icephobic surfaces owing to their merits of energy conservation and environmental friendliness. However, it is always challenging to get an ideal photothermal material which is cheap, easily fabricating, and highly photothermally efficient. Here, we demonstrate a low-cost, high-efficiency superhydrophobic photothermal surface, uniquely based on inexpensive commonly seen candle soot. It consists of three components: candle soot, silica shell, and polydimethylsiloxane (PDMS) brushes. The candle soot provides hierarchical nano/microstructures and photothermal ability, the silica shell strengthens the hierarchical candle soot, and the grafted low-surface-energy PDMS brushes endow the surface with superhydrophobicity. Upon illumination under 1 sun, the surface temperature can increase by 53 °C, so that no ice can form at an environmental temperature as low as -50 °C and it can also rapidly melt the accumulated frost and ice in 300 s. The superhydrophobicity enables the melted water to slide away immediately, leaving a clean and dry surface. The surface can also self-clean, which further enhances its effectiveness by removing dust and other contaminants which absorb and scatter sunlight. In addition, after oxygen plasma treatment, the surface can restore superhydrophobicity with sunlight illumination. The presented icephobic surface shows great potential and broad impacts owing to its inexpensive component materials, simplicity, ecofriendliness, and high energy efficiency.

5.
Langmuir ; 38(8): 2460-2466, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35167305

RESUMO

Ice structures and their formation process are fundamentally important to cryobiology, geoscience, and physical chemistry. In this work, we synthesized gold nanoprobes by grafting water-soluble polyethylene glycol (PEG) onto spherical gold nanoparticles and analyzed the structure of ice formation in the vicinity of the resulting hybrid PEG-Au nanoparticles (AuPEGNPs). Temperature-dependent in situ small-angle X-ray scattering (SAXS) indicated that AuPEGNPs, like PEG, caused the formation of bulk spherulite ice. Unlike for PEG, we observed the formation of lamellar ice with a periodicty of 4.6 nm, which is thermodynamically less stable than the bulk form. The lamellar ice formed after AuPEGNP agglomeration during cooling at -19 °C, and it remained during subsequent heating from -20 to -11 °C and melted at around -10 °C, far below the melting temperature of bulk ice. We explain different effects of AuPEGNP and free PEG on ice formation by the topological differences. The highly concentrated PEG chains on the agglomerated Au cores lead to the formation of PEG-hydrates that assemble into lamellar ice with a periodicity of 4.6 nm.

6.
Fish Shellfish Immunol ; 120: 92-101, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800657

RESUMO

Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) has become a popular technique to assess gene expression. Suitable reference genes are normally identified first to ensure accurate normalization. The aim of the present study was to select the most stable genes in embryonic developmental stages, the early development of immune organs, and cells infected with Chinese rice-field eel rhabdovirus (CrERV) of the rice-field eel (Monopterus albus). Four reference genes, including those encoding 18S ribosomal RNA (18SrRNA), beta actin (ß-actin), elongation factor 1 alpha (EF1ɑ), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were assessed using geNorm, NormFinder, BestKeeper, and RefFinder software. Analyses indicated the stability ranking was 18SrRNA > ß-actin > GAPDH > EF1α in the embryonic stage, with 18SrRNA as the most stable reference gene. For immunity-related organs at different developmental stages, the order in the thymus was ß-actin > GAPDH > EF1α > 18SrRNA, with ß-actin as the most stable gene. In both spleen and kidney tissues, the rank order was EF1ɑ > GAPDH > ß-actin > 18SrRNA, with EF1α as the most stable gene. Furthermore, in rice-field eel kidney (CrE-K) cells infected with CrERV, the ranking was EF1ɑ > ß-actin > GAPDH > 18SrRNA, with EF1α as the most stable gene. The results for cells infected with CrERV were verified by testing signaling pathway genes catenin beta 1 (CTNNB1) and NOTCH1 based on the above four genes after virus infection in CrE-K cells. This study laid the foundation for choosing suitable reference genes for immunity-related gene expression analysis in rice-field eel.


Assuntos
Infecções por Rhabdoviridae/veterinária , Smegmamorpha , Actinas/genética , Animais , Perfilação da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , RNA Ribossômico 18S/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Rhabdoviridae , Smegmamorpha/genética , Smegmamorpha/imunologia , Smegmamorpha/virologia
7.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296522

RESUMO

Hypoxia is a common biological condition in many malignant solid tumors that plays an imperative role in regulating tumor growth and impacting the treatment's therapeutic effect. Therefore, the hypoxia assessment is of great significance in predicting tumor development and evaluating its prognosis. Among the plenty of existing tumor diagnosis techniques, magnetic resonance imaging (MRI) offers certain distinctive features, such as being free of ionizing radiation and providing images with a high spatial resolution. In this study, we develop a fluorescent traceable and hypoxia-sensitive T1-weighted MRI probe (Fe3O4-Met-Cy5.5) via conjugating notable hypoxia-sensitive metronidazole moiety and Cy5.5 dye with ultrasmall iron oxide (Fe3O4) nanoparticles. The results of in vitro and in vivo experiments show that Fe3O4-Met-Cy5.5 has excellent performance in relaxivity, biocompatibility, and hypoxia specificity. More importantly, the obvious signal enhancement in hypoxic areas indicates that the probe has great feasibility for sensing tumor hypoxia via T1-weighted MRI. These promising results may unlock the potential of Fe3O4 nanoparticles as T1-weighted contrast agents for the development of clinical hypoxia probes.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Meios de Contraste , Hipóxia Tumoral , Metronidazol , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Hipóxia/diagnóstico por imagem , Nanopartículas Magnéticas de Óxido de Ferro
8.
Small ; 16(46): e2003638, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33107169

RESUMO

Photonic microspheres offer building units with unique topological structures and specific optical functions for diverse applications. Here, a new class of inorganic photonic microspheres with superior robustness, optical and electrical properties is reported by introducing a unique localized concentric ordering architecture and chemical interaction, which further serve as building blocks for deep pattern encoding and multiple sensory optoelectronic devices. Benefiting from localized concentric ordering architecture, the resultant photonic microspheres demonstrate orientation- and angle-independent structural colors. Notably, the formation of well-combined lamellae inorganic layers by chemical interaction grants the microspheres superior mechanical robustness, excellent solvent resistance, thermal stability, and multiple optoelectronic properties simultaneously, rarely seen in previous reports. Owing to these merits, such microspheres are used to construct diverse encoded photonic patterns for anti-counterfeiting applications. Interestingly, cross-communication among neighboring microspheres creates complex photonic sub-patterns, which provide "fingerprint information" with deep encryption security. Moreover, a single photonic microsphere-based optoelectronic microsensor is demonstrated for the first time, which achieves appealing application for real-time health monitoring and safety warning toward triple environmental stimuli. This work not only provides a new kind of robust, multifunctional photonic material, but also opens a new avenue for their uses as complexed pattern encoding and multi-parametric sensing platforms.

9.
Langmuir ; 36(7): 1691-1698, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32008324

RESUMO

Ice recrystallization (IR) is ubiquitous, playing an important role in many areas of science, such as cryobiology, food science, and atmospheric physics. However, controllable ice recrystallization remains a challenging task largely due to an incomplete understanding of the physical mechanism associated with ice recrystallization. Herein, we explore the molecular mechanism underlying the controlling of ice recrystallization by using different small amphiphilic molecules (surfactants) through joint experimental measurements and molecular dynamics simulation. Our experiment shows that in nonionic/zwitterionic surfactant solutions, the mean size of the recrystallized ice grains increases monotonically with the concentration of surfactants, whereas in the ionic surfactant solutions, the mean size of the recrystallized ice grains tends to increase first and then decrease with increasing the concentration, yielding a peak typically at ∼5 µM. Further sequential ice affinity purification experiments and molecular dynamics simulations show that the surfactants actually do not bind to ice directly. Rather, the different spatial distributions of counter ions and molecular surfactants in the interfacial regions (ice-water interface and water-air interface) and bulk region can markedly affect the mean size of the recrystallized ice grain.

10.
Fish Shellfish Immunol ; 103: 9-16, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32344024

RESUMO

The Chinese sturgeon (Acipenser sinensis) is one of the critically endangered aquatic species in China. It is also among the oldest extant actinopterygian fish species. To advance the characterization of the Chinese sturgeon immune system, we identified the gene encoding the macrophage migration inhibitory factor (MIF), a multifunctional cytokine that contributes to both innate and adaptive immune responses. Molecular and phylogenic analysis indicates the Chinese sturgeon (cs) MIF share a high degree of structural conservation with other MIF sequences and is closely related to other bony fish MIF. At steady state, cs-mif gene is expressed at relatively high levels in the brain, and to a lesser but significant level in liver, spleen, kidney, gut and skin. The spatial expression patterns determined by in situ hybridization indicates a preferential distribution of cs-mif transcripts in the cerebral cortex, the gut epithelium, hematopoietic tissues of kidney, spleen and liver parenchyma, and skin epidermis. Marked increase of cs-mif gene expression was induced by lipopolysaccharide (LPS) stimulation and Aeromonas hydrophila infection in all tested tissues. Furthermore, higher cs-mif transcript levels were detected in the liver, spleen, kidney, gut and skin during stress response resulting from hyperthermia. These results are not only consistent with the expected role of cs-mif gene in innate immunity but also suggest a potential role of this gene in stress response to hyperthermia in the Chinese sturgeon.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Lipopolissacarídeos/farmacologia , Fatores Inibidores da Migração de Macrófagos/química , Filogenia , Alinhamento de Sequência/veterinária
11.
Angew Chem Int Ed Engl ; 59(35): 15141-15146, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32432368

RESUMO

It has been long-pursued but remains a challenge to precisely manipulate the molecular assembly process to obtain desired functional structures. Reported here is the control over the assembly of solute molecules, by a programmed recrystallization of solvent crystal grains, to form micro/nanoparticles with tunable sizes and crystalline forms. A quantitative correlation between the protocol of recrystallization temperature and the assembly kinetics results in precise control over the size of assembled particles, ranging from single-atom catalysts, pure drug nanoparticles, to sub-millimeter organic-semiconductor single crystals. The extensive regulation of the assembly rates leads to the unique and powerful capability of tuning the stacking of molecules, involving the formation of single crystals of notoriously crystallization-resistant molecules and amorphous structures of molecules with a very high propensity to crystallize, which endows it with wide-ranging applications.

12.
Langmuir ; 34(40): 11986-11991, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30203979

RESUMO

Ice formation on solid surfaces includes heterogeneous ice nucleation and ice propagation processes. However, no study has been focused on tuning of both ice nucleation and ice propagation via a simple anti-icing coating method. In this work, we have prepared multilayer hydrogels based on simple layer-by-layer (LBL) deposition approach and discover the ion-specific effect on both ice nucleation and ice propagation. A large ice nucleation temperature window of 11 °C is controlled via changing different counterions; meanwhile, the differences in ice propagation time can be tuned up to 4 orders of magnitude. Through synergistically controlling of ice nucleation and propagation delay times, we can tune the freezing delay time of water droplets on multilayer hydrogel surfaces up to 3 orders of magnitude via changing various counterions. Considering the application requirements, these multilayer hydrogels are stable under different conditions and can be coated on various materials without destroying the existing surface. This new insight can inspire the design of anti-icing surfaces based on regulating both ice nucleation and ice propagation.

13.
Langmuir ; 33(38): 9590-9597, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28841793

RESUMO

We develop a simple approach for the preparation of oil/water separation material based on the reduced graphene oxide. First, the graphene oxide (GO) is coated on the commercially available wire mesh. The treatment of O2 plasma is exploited to open the pores from the back side using the wire mesh as a ready-made mask, and the GO-coated mesh is subjected to the thermal annealing at 200 °C for 2 h to form stable superhydrophobic reduced graphene oxide (RGO) coating. The as-prepared mesh has excellent stability and reusability and the separation selectivity is above 98% for a variety of mixtures of oil and water. Meanwhile, the as-prepared RGO@mesh-300 shows stable and robust superhydrophobic properties including the stability of long-term storage, the resistance to high temperatures, high humidities, and mechanical abrasion. It is expected that this method of fabricating superhydrophobic materials can find more practical applications, especially in the oil/water separation.

14.
Angew Chem Int Ed Engl ; 54(31): 8975-9, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26083324

RESUMO

Solid deposition, such as the formation of ice on outdoor facilities, the deposition of scale in water reservoirs, the sedimentation of fat, oil, and grease (FOG) in sewer systems, and the precipitation of wax in petroleum pipelines, cause a serious waste of resources and irreversible environmental pollution. Inspired by fish and pitcher plants, we present a self-replenishable organogel material which shows ultra-low adhesion to solidified paraffin wax and crude oil by absorption of low-molar-mass oil from its crude-oil environment. Adhesion of wax on the organogel surface was over 500 times lower than adhesion to conventional material surfaces and the wax was found to slide off under the force of gravity. This design concept of a gel with decreased adhesion to wax and oil can be extended to deal with other solid deposition problems.


Assuntos
Materiais Biomiméticos/química , Dimetilpolisiloxanos/química , Géis/química , Poluentes Ambientais/química , Estrutura Molecular , Indústria de Petróleo e Gás/métodos , Petróleo
15.
Small Methods ; 8(3): e2301479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009499

RESUMO

Nanomaterials are increasingly being employed for biomedical applications, necessitating a comprehensive understanding of their degradation behavior and potential toxicity in the biological environment. This study utilizes a continuous flow system to simulate the biologically relevant degradation conditions and investigate the effects of pH, protein, redox species, and chelation ligand on the degradation of iron oxide nanoparticles. The morphology, aggregation state, and relaxivity of iron oxide nanoparticles after degradation are systematically characterized. The results reveal that the iron oxide nanoparticles degrade at a significantly higher rate under the acidic environment. Moreover, incubation with bovine serum albumin enhances the stability and decreases the dissolution rate of iron oxide nanoparticles. In contrast, glutathione accelerates the degradation of iron oxide nanoparticles, while the presence of sodium citrate leads to the fastest degradation. This study reveals that iron oxide nanoparticles undergo degradation through various mechanisms in different biological microenvironments. Furthermore, the dissolution and aggregation of iron oxide nanoparticles during degradation significantly impact their relaxivity, which has implications for their efficacy as magnetic resonance imaging contrast agents in vivo. The results provide valuable insights for assessing biosafety and bridge the gap between fundamental research and clinical applications of iron oxide nanoparticles.


Assuntos
Meios de Contraste , Compostos Férricos , Compostos Férricos/química , Meios de Contraste/química , Citrato de Sódio , Nanopartículas Magnéticas de Óxido de Ferro
16.
Nanoscale Adv ; 5(16): 4240-4249, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37560436

RESUMO

The high mortality of breast cancer is closely related to lymph node (LN) metastasis. Sentinel LNs (SLNs) are the first station where tumor cells metastasize through the lymphatic system. As such, achieving precise diagnosis of the early metastatic status of SLNs during surgery is of paramount importance for precision therapy of breast cancer. While invasive SLNs biopsy is the gold standard for evaluating the status of SLNs, its use is often time-consuming and may increase the risk of operation. It is still challenging to develop a means for rapid SLN metastasis diagnosis. Herein, NaGdF4:5%Nd@NaLuF4 rare earth nanoparticles (Gd:Nd-RENPs) with near-infrared-II (NIR-II) fluorescence and magnetic resonance imaging (MRI) properties were fabricated. With the nanoprobe, metastatic SLNs and lymph vessels (LVs) rapidly brighten and can be observed by the NIR-II imaging system, which is totally different from normal LNs and LVs. The remarkable contrast observed via NIR-II imaging serves to swiftly delineate metastatic SLNs from normal ones, subsequently guiding precise surgical resection of metastatic LNs in just 10 minutes. Furthermore, the consistency between the results obtained via MRI and NIR-II imaging further validates the dependability of this nanoprobe as a diagnostic tool for metastatic SLNs. Additionally, the Gd:Nd-RENPs exhibited good biocompatibility in vitro and in vivo. In this study, we demonstrated the advantages and prospects of NIR-II imaging for intraoperative early SLN metastasis assessment and shed light on the potential of the dual-modal Gd:Nd-RENPs as a nanoprobe.

17.
Adv Mater ; 35(18): e2211673, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36932878

RESUMO

As the soaring demand for energy storage continues to grow, batteries that can cope with extreme conditions are highly desired. Yet, existing battery materials are limited by weak mechanical properties and freeze-vulnerability, prohibiting safe energy storage in devices that are exposed to low temperature and unusual mechanical impacts. Herein, a fabrication method harnessing the synergistic effect of co-nonsolvency and "salting-out" that can produce poly(vinyl alcohol) hydrogel electrolytes with unique open-cell porous structures, composed of strongly aggregated polymer chains, and containing disrupted hydrogen bonds among free water molecules, is introduced. The hydrogel electrolyte simultaneously combines high strength (tensile strength 15.6 MPa), freeze-tolerance (< -77 °C), high mass transport (10× lower overpotential), and dendrite and parasitic reactions suppression for stable performance (30 000 cycles). The high generality of this method is further demonstrated with poly(N-isopropylacrylamide) and poly(N-tertbutylacrylamide-co-acrylamide) hydrogels. This work takes a further step toward flexible battery development for harsh environments.

18.
ACS Nano ; 17(8): 7109-7134, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37036400

RESUMO

Lesion areas are distinguished from normal tissues surrounding them by distinct physiological characteristics. These features serve as biological hallmarks with which targeted biomedical imaging of the lesion sites can be achieved. Although tremendous efforts have been devoted to providing smart imaging probes with the capability of visualizing the physiological hallmarks at the molecular level, the majority of them are merely able to derive anatomical information from the tissues of interest, and thus are not suitable for taking part in in vivo quantification of the biomarkers. Recent advances in chemical construction of advanced ratiometric nanoprobes (RNPs) have enabled a horizon for quantitatively monitoring the biological abnormalities in vivo. In contrast to the conventional probes whose dependency of output on single-signal profiles restricts them from taking part in quantitative practices, RNPs are designed to provide information in two channels, affording a self-calibration opportunity to exclude the analyte-independent factors from the outputs and address the issue. Most of the conventional RNPs have encountered several challenges regarding the reliability and sufficiency of the obtained data for high-performance imaging. In this Review, we have summarized the recent progresses in developing highly advanced RNPs with the capabilities of deriving maximized information from the lesion areas of interest as well as adapting themselves to the complex biological systems in order to minimize microenvironmental-induced falsified signals. To provide a better outlook on the current advanced RNPs, nanoprobes based on optical, photoacoustic, and magnetic resonance imaging modalities for visualizing a wide range of analytes such as pH, reactive species, and different derivations of amino acids have been included. Furthermore, the physicochemical properties of the RNPs, the major constituents of the nanosystems and the analyte recognition mechanisms have been introduced. Moreover, the alterations in the values of the ratiometric signal in response to the analyte of interest as well as the time at which the highest value is achieved, have been included for most of RNPs discussed in this Review. Finally, the challenges as well as future perspectives in the field are discussed.


Assuntos
Aminoácidos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
19.
Adv Mater ; : e2307632, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126914

RESUMO

Soft electronic circuits are crucial for wearable electronics, biomedical technologies, and soft robotics, requiring soft conductive materials with high conductivity, high strain limit, and stable electrical performance under deformation. Liquid metals (LMs) have become attractive candidates with high conductivity and fluidic compliance, while effective manufacturing methods are demanded. Digital light processing (DLP)-based projection lithography is a high-resolution and high-throughput printing technique for primarily polymers and some metals. If LMs can be printed with DLP as well, the entire soft devices can be fabricated by one printer in a streamlined and highly efficient process. Herein, fast and facile DLP-based LM printing is achieved. Simply with 5-10 s of patterned ultraviolet (UV)-light exposure, a highly conductive and stretchable pattern can be printed using a photo-crosslinkable LM particle ink. The printed eutectic gallium indium traces feature high resolution (≈20 µm), conductivity (3 × 106 S m-1 ), stretchability (≈2500%), and excellent stability (consistent performance at different deformation). Various patterns are printed in diverse material systems for broad applications including stretchable displays, epidermal strain sensors, heaters, humidity sensors, conformal electrodes for electrography, and multi-layer actuators. The facile and scalable process, excellent performance, and diverse applications ensure its broad impact on soft electronic manufacturing.

20.
Nanoscale ; 15(8): 3991-3999, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723217

RESUMO

Magnetic resonance imaging (MRI)/nuclear medicine imaging (NMI) dual-modality imaging based on radiolabeled nanoparticles has been increasingly exploited for accurate diagnosis of tumor and cardiovascular diseases by virtue of high spatial resolution and high sensitivity. However, significant challenges exist in pursuing truly clinical applications, including massive preparation and rapid radiolabeling of nanoparticles. Herein, we report a clinically translatable kit for the convenient construction of MRI/NMI nanoprobes relying on the flow-synthesis and anchoring group-mediated radiolabeling (LAGMERAL) of iron oxide nanoparticles. First, homogeneous iron oxide nanoparticles with excellent performance were successfully obtained on a large scale by flow synthesis, followed by the surface anchoring of diphosphonate-polyethylene glycol (DP-PEG) to simultaneously render the underlying nanoparticles biocompatible and competent in robust labeling of radioactive metal ions. Moreover, to enable convenient and safe usage in clinics, the DP-PEG modified nanoparticle solution was freeze-dried and sterilized to make a radiolabeling kit followed by careful evaluations of its in vitro and in vivo performance and applicability. The results showed that 99mTc labeled nanoprobes are effectively obtained with a labeling yield of over 95% in 30 minutes after simply injecting Na[99mTcO4] solution into the kit. In addition, the Fe3O4 nanoparticles sealed in the kit can well stand long-term storage even for 300 days without deteriorating the colloidal stability and radiolabeling yield. Upon intravenous injection of the as-prepared radiolabeled nanoprobes, high-resolution vascular images of mice were obtained by vascular SPECT imaging and magnetic resonance angiography, demonstrating the promising clinical translational value of our radiolabeling kit.


Assuntos
Nanopartículas , Medicina Nuclear , Camundongos , Animais , Cintilografia , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Imageamento por Ressonância Magnética/métodos , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA