Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(10): e2106144, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35038220

RESUMO

Solid phase conversion sulfur cathode is an effective strategy for eliminating soluble polysulfide intermediates (LiPSs) and improving cyclability of Li-S batteries. However, realizing such a sulfur cathode with high sulfur loading and high capacity utilization is very challenging due to the insulating nature of sulfur. In this work, a strategy is proposed for fabricating solid phase conversion sulfur cathode by encapsulating sulfur in the mesoporous channels of CMK-3 carbon to form a coaxially assembled sulfur/carbon (CA-S/C) composite. Vinyl carbonate (VC) is simultaneously utilized as the electrolyte cosolvent to in-situ form a dense solid electrolyte interface (SEI) on the CA-S/C composite surface through its nucleophilic reaction with the freshly generated polysulfides at the beginning of initial discharge, thus separating the direct contact of interior sulfur with the outer electrolyte. As expected, such a CA-S/C cathode can operate in a solid phase conversion manner in the VC-ether cosolvent electrolyte to exhibit a full capacity utilization (1667 mA h g-1 , ≈100%), a high rate capability of 2.0 A g-1 and excellent long-term cyclability over 500 cycles even at a high sulfur loading (75%, based on the weight of CA-S/C composite), demonstrating great promise for constructing high-energy-density and cycle-stable Li-S batteries.

2.
Small ; 16(20): e2000745, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32329571

RESUMO

Iron sulfides with high theoretical capacity and low cost have attracted extensive attention as anode materials for sodium ion batteries. However, the inferior electrical conductivity and devastating volume change and interface instability have largely hindered their practical electrochemical properties. Here, ultrathin amorphous TiO2 layer is constructed on the surface of a metal-organic framework derived porous Fe7 S8 /C electrode via a facile atomic layer deposition strategy. By virtue of the porous structure and enhanced conductivity of the Fe7 S8 /C, the electroactive TiO2 layer is expected to effectively improve the electrode interface stability and structure integrity of the electrode. As a result, the TiO2 -modified Fe7 S8 /C anode exhibits significant performance improvement for sodium-ion batteries. The optimal TiO2 -modified Fe7 S8 /C electrode delivers reversible capacity of 423.3 mA h g-1 after 200 cycles with high capacity retention of 75.3% at 0.2 C. Meanwhile, the TiO2 coating is conducive to construct favorable solid electrolyte interphase, leading to much enhanced initial Coulombic efficiency from 66.9% to 72.3%. The remarkable improvement suggests that the interphase modification holds great promise for high-performance metal sulfide-based anode materials for sodium-ion batteries.

3.
J Nanosci Nanotechnol ; 21(12): 6024-6034, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229800

RESUMO

Carbon dots have good biocompatibility, low toxicity, excellent photoluminescence properties, and good light stability, endowing them good application prospects in drug detection, chemical analysis, drug delivery, and other fields. In this study, p-phenylenediamine was used as the carbon source, and carbon dots were synthesized in hydrochloric acid medium using microwave method. When the excitation wavelength is about 300 nm, a strong emission peak of 689 nm is detected for the synthesized carbon dots. Carbon dots' size is about 4.0±0.2 nm, and the carbon dots with spherical shape are uniformly distributed. The quantum yield of carbon dots is 8.07%. In addition, cephalosporins. were detected and analyzed using synthetic carbon dots. The results show that the presence of cephalosporins reduced the fluorescence intensity of carbon dots, and the reduced fluorescence intensity of the synthesized carbon dots showed a linear correlation with the cephalosporins' concentration. Cephalosporins' detection scope is 0.2 µmol/L to 80 µ mol/L, and the detection limit is 0.084 µ mol/L. A mechanism study shows that the effect of cephalosporins on carbon dot's fluorescence intensity can be attributed to the inner filter effect of cephalosporins. On this basis, a sensitive and 0selective cephalosporins detection method was established. Furthermore, this established method for cephalosporins detection was applied to real samples, resulting in a low relative standard deviation (RSD) and good recoveries.


Assuntos
Carbono , Pontos Quânticos , Cefalosporinas , Corantes Fluorescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA