Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 41(4): 2644-58, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23303783

RESUMO

The RNA-binding protein AUF1 binds AU-rich elements in 3'-untranslated regions to regulate mRNA degradation and/or translation. Many of these mRNAs are predicted microRNA targets as well. An emerging theme in post-transcriptional control of gene expression is that RNA-binding proteins and microRNAs co-regulate mRNAs. Recent experiments and bioinformatic analyses suggest this type of co-regulation may be widespread across the transcriptome. Here, we identified mRNA targets of AUF1 from a complex pool of cellular mRNAs and examined a subset of these mRNAs to explore the links between RNA binding and mRNA degradation for both AUF1 and Argonaute 2 (AGO2), which is an essential effector of microRNA-induced gene silencing. Depending on the specific mRNA examined, AUF1 and AGO2 binding is proportional/cooperative, reciprocal/competitive or independent. For most mRNAs in which AUF1 affects their decay rates, mRNA degradation requires AGO2. Thus, AUF1 and AGO2 present mRNA-specific allosteric binding relationships for co-regulation of mRNA degradation.


Assuntos
Proteínas Argonautas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Células HeLa , Ribonucleoproteína Nuclear Heterogênea D0 , Humanos , Células K562
2.
Toxins (Basel) ; 15(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36828457

RESUMO

In the so-called "struggle for existence" competition, the venomous animals developed a smart and effective strategy, envenomation, for predation and defense. Biochemical analysis revealed that animal venoms are chemical pools of proteinase, peptide toxins, and small organic molecules with various biological activities. Of them, peptide toxins are of great molecular diversity and possess the capacity to modulate the activity of ion channels, the second largest group of drug targets expressed on the cell membrane, which makes them a rich resource for developing peptide drug pioneers. The spider Lycosa coelestis (L. coelestis) commonly found in farmland in China is a dominant natural enemy of agricultural pests; however, its venom composition and activity were never explored. Herein, we conducted cDNA library and transcriptomic sequencing of the venom gland of L. coelestis, which identified 1131 high-quality expressed sequence tags (ESTs), grouped into three categories denoted as toxin-like ESTs (597, 52.79%), cellular component ESTs (357, 31.56%), and non-matched ESTs (177, 15.65%). These toxin-like ESTs encode 98 non-reductant toxins, which are artificially divided into 11 families based on their sequence homology and cysteine frameworks (2-14 cysteines forming 1-7 disulfide bonds to stabilize the toxin structure). Furthermore, RP-HPLC purification combined with off-line MALDI-TOF analysis have detected 147 different peptides physically existing in the venom of L. coelestis. Electrophysiology analysis confirmed that the venom preferably inhibits the voltage-gated calcium channels in rat dorsal root ganglion neurons. Altogether, the present study has added a great lot of new members to the spider toxin superfamily and built the foundation for characterizing novel active peptides in the L. coelestis venom.


Assuntos
Venenos de Aranha , Aranhas , Animais , Ratos , Transcriptoma , Peptídeos/genética , Biblioteca Gênica , Etiquetas de Sequências Expressas , Venenos de Aranha/química , Aranhas/genética
3.
Toxins (Basel) ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35202167

RESUMO

The venoms of toxic animals are chemical pools composed of various proteins, peptides, and small organic molecules used for predation and defense, in which the peptidic toxins have been intensively pursued mining modulators targeting disease-related ion channels and receptors as valuable drug pioneers. In the present study, we uncovered the molecular diversity of peptide toxins in the venom of the spider Heteropoda pingtungensis (H. pingtungensis) by using a combinatory strategy of venom gland cDNA library and transcriptome sequencing (RNA-seq). An amount of 991 high-quality expressed sequence tags (ESTs) were identified from 1138 generated sequences, which fall into three categories, such as the toxin-like ESTs (531, 53.58%), the cellular component ESTs (255, 25.73%), and the no-match ESTs (205, 20.69%), as determined by gene function annotations. Of them, 190 non-redundant toxin-like peptides were identified and can be artificially grouped into 13 families based on their sequence homology and cysteine frameworks (families A-M). The predicted mature toxins contain 2-10 cysteines, which are predicted to form intramolecular disulfide bonds to stabilize their three-dimensional structures. Bioinformatics analysis showed that toxins from H. pingtungensis venom have high sequences variability and the biological targets for most toxins are unpredictable due to lack of homology to toxins with known functions in the database. Furthermore, RP-HPLC and MALDI-TOF analyses have identified a total of 110 different peptides physically existing in the H. pingtungensis venom, and many RP-HPLC fractions showed potent inhibitory activity on the heterologously expressed NaV1.7 channel. Most importantly, two novel NaV1.7 peptide antagonists, µ-Sparatoxin-Hp1 and µ-Sparatoxin-Hp2, were characterized. In conclusion, the present study has added many new members to the spider toxin superfamily and built the foundation for identifying novel modulators targeting ion channels in the H. pingtungensis venom.


Assuntos
Biblioteca Gênica , Variação Genética , Peptídeos/química , Peptídeos/genética , Venenos de Aranha/química , Aranhas/genética , Transcriptoma , Sequência de Aminoácidos , Animais , China , Etiquetas de Sequências Expressas , Genótipo , Estrutura Molecular
4.
Neuropharmacology ; 212: 109057, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413303

RESUMO

Noxious pain signals are transduced in the peripheral nervous system as action potentials, which rely on the activities of voltage-gated sodium channels (NaVs). Blocking NaVs is thus a valuable strategy for pain treatment. Here, we report the characterization of a novel NaVs antagonist, 2-(2-(diethylamino)ethyl)indeno[1,2,3-de]phthalazin-3(2H)-one (C65780), and investigation of its action mechanisms. C65780 inhibited the resting NaV1.7, NaV1.8, and NaV1.9 channels with IC50s of 11.3 ± 0.4 µM, 2.7 ± 0.3 µM and 19.2 ± 2.3 µM, respectively. Mechanistic analysis revealed that C65780 quickly bound to its high-affinity receptor site in NaV1.7 as formed by the fast inactivation process and stabilized the channels in a slowly recovering state, for which it facilitated NaV1.7 channels' inactivation by shifting their inactivation-voltage relationship in the hyperpolarizing direction, increasing the plateau proportion of inactivated channels, and blunting their time-dependent recovery. The slow inactivation of NaV1.7, however, is not involved in the action of C65780. In DRG neurons, C65780 also inhibited activity of NaVs, thus dampening neuronal excitability. These effects parlayed into a broad efficacy of orally administrated C65780 in various models of pain, with an efficacy comparable to the antidepressant/neuropathic pain drug Amitriptyline. Excitingly, C65780 demonstrated weaker inactivated state inhibition of related NaV1.4 and NaV1.5 channels compared to amitriptyline, and no toxicity or inhibition of locomotion in a forced-swimming test was observed in mice at pain-relieving doses. These results demonstrate that C65780 acts by trapping NaVs in the inactivated and slowly-recovering state to produce pain relief and may represent an excellent starting compound for developing analgesics.


Assuntos
Neuralgia , Canais de Sódio Disparados por Voltagem , Potenciais de Ação , Amitriptilina , Analgésicos/farmacologia , Animais , Gânglios Espinais/metabolismo , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
5.
Front Pharmacol ; 13: 924661, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991876

RESUMO

The bacterial sodium channel NaChBac is the prokaryotic prototype for the eukaryotic NaV and CaV channels, which could be used as a relatively simple model to study their structure-function relationships. However, few modulators of NaChBac have been reported thus far, and the pharmacology of NaChBac remains to be investigated. In the present study, we show that the spider toxin κ-LhTx-1, an antagonist of the KV4 family potassium channels, potently inhibits NaChBac with an IC50 of 491.0 ± 61.7 nM. Kinetics analysis revealed that κ-LhTx-1 inhibits NaChBac by impeding the voltage-sensor activation. Site-directed mutagenesis confirmed that phenylalanine-103 (F103) in the S3-S4 extracellular loop of NaChBac was critical for interacting with κ-LhTx-1. Molecular docking predicts the binding interface between κ-LhTx-1 and NaChBac and highlights a dominant hydrophobic interaction between W27 in κ-LhTx-1 and F103 in NaChBac that stabilizes the interface. In contrast, κ-LhTx-1 showed weak activity on the mammalian NaV channels, with 10 µM toxin slightly inhibiting the peak currents of NaV1.2-1.9 subtypes. Taken together, our study shows that κ-LhTx-1 inhibits the bacterial sodium channel, NaChBac, using a voltage-sensor trapping mechanism similar to mammalian NaV site 4 toxins. κ-LhTx-1 could be used as a ligand to study the toxin-channel interactions in the native membrane environments, given that the NaChBac structure was successfully resolved in a nanodisc.

6.
Sci Adv ; 8(38): eabq1799, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129988

RESUMO

Pancreatic ß cell failure is a hallmark of diabetes. However, the causes of ß cell failure remain incomplete. Here, we report the identification of tetranectin (TN), an adipose tissue-enriched secretory molecule, as a negative regulator of insulin secretion in ß cells in diabetes. TN expression is stimulated by high glucose in adipocytes via the p38 MAPK/TXNIP/thioredoxin/OCT4 signaling pathway, and elevated serum TN levels are associated with diabetes. TN treatment greatly exacerbates hyperglycemia in mice and suppresses glucose-stimulated insulin secretion in islets. Conversely, knockout of TN or neutralization of TN function notably improves insulin secretion and glucose tolerance in high-fat diet-fed mice. Mechanistically, TN binds with high selectivity to ß cells and inhibits insulin secretion by blocking L-type Ca2+ channels. Our study uncovers an adipocyte-ß cell cross-talk that contributes to ß cell dysfunction in diabetes and suggests that neutralization of TN levels may provide a new treatment strategy for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Adipócitos/metabolismo , Animais , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Lectinas Tipo C , Camundongos , Tiorredoxinas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Front Pharmacol ; 12: 692076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177600

RESUMO

The naturally occurred peptide toxins from animal venoms are valuable pharmacological tools in exploring the structure-function relationships of ion channels. Herein we have identified the peptide toxin κ-LhTx-1 from the venom of spider Pandercetes sp (the Lichen huntsman spider) as a novel selective antagonist of the KV4 family potassium channels. κ-LhTx-1 is a gating-modifier toxin impeded KV4 channels' voltage sensor activation, and mutation analysis has confirmed its binding site on channels' S3b region. Interestingly, κ-LhTx-1 differently modulated the gating of KV4 channels, as revealed by toxin inhibiting KV4.2/4.3 with much more stronger voltage-dependence than that for KV4.1. We proposed that κ-LhTx-1 trapped the voltage sensor of KV4.1 in a much more stable resting state than that for KV4.2/4.3 and further explored the underlying mechanism. Swapping the non-conserved S3b segments between KV4.1(280FVPK283) and KV4.3(275VMTN278) fully reversed their voltage-dependence phenotypes in inhibition by κ-LhTx-1, and intensive mutation analysis has identified P282 in KV4.1, D281 in KV4.2 and N278 in KV4.3 being the key residues. Furthermore, the last two residues in this segment of each KV4 channel (P282/K283 in KV4.1, T280/D281 in KV4.2 and T277/N278 in KV4.3) likely worked synergistically as revealed by our combinatorial mutations analysis. The present study has clarified the molecular basis in KV4 channels for their different modulations by κ-LhTx-1, which have advanced our understanding on KV4 channels' structure features. Moreover, κ-LhTx-1 might be useful in developing anti-arrhythmic drugs given its high affinity, high selectivity and unique action mode in interacting with the KV4.2/4.3 channels.

8.
Gene ; 500(1): 10-21, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22452843

RESUMO

Messenger RNA decay is an essential step in gene expression to set mRNA abundance in the cytoplasm. The binding of proteins and/or noncoding RNAs to specific recognition sequences or secondary structures within mRNAs dictates mRNA decay rates by recruiting specific enzyme complexes that perform the destruction processes. Often, the cell coordinates the degradation or stabilization of functional subsets of mRNAs encoding proteins collectively required for a biological process. As well, extrinsic or intrinsic stimuli activate signal transduction pathways that modify the mRNA decay machinery with consequent effects on decay rates and mRNA abundance. This review is an update to our 2001 Gene review on mRNA stability in mammalian cells, and we survey the enormous progress made over the past decade.


Assuntos
Regulação da Expressão Gênica , Estabilidade de RNA , Animais , Humanos , Redes e Vias Metabólicas , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
Mol Cell Biol ; 31(7): 1419-31, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21245386

RESUMO

AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues--Ser(15), Ser(78), and Ser(82)-by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2-Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization.


Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Processamento de Proteína Pós-Traducional , Estabilidade de RNA/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Substituição de Aminoácidos/genética , Linhagem Celular , Sobrevivência Celular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Choque Térmico , Ribonucleoproteína Nuclear Heterogênea D0 , Humanos , Imunoprecipitação , Interleucina-1beta/genética , Cinética , Chaperonas Moleculares , Proteínas Mutantes/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA