Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.827
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(5): 1127-1144.e21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428393

RESUMO

Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.


Assuntos
RNA Polimerases Dirigidas por DNA , Plastídeos , Cloroplastos/metabolismo , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/genética , Nicotiana/genética , Fotossíntese , Plastídeos/enzimologia
2.
Nature ; 628(8009): 887-893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538796

RESUMO

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Assuntos
Microscopia Crioeletrônica , Exorribonucleases , RNA Polimerase II , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminação da Transcrição Genética , Exorribonucleases/química , Exorribonucleases/metabolismo , Exorribonucleases/ultraestrutura , Modelos Moleculares , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/ultraestrutura , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Domínios Proteicos , RNA Fúngico/biossíntese , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/ultraestrutura
3.
Mol Cell ; 80(2): 296-310.e6, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979304

RESUMO

Necroptosis induction in vitro often requires caspase-8 (Casp8) inhibition by zVAD because pro-Casp8 cleaves RIP1 to disintegrate the necrosome. It has been unclear how the Casp8 blockade of necroptosis is eliminated naturally. Here, we show that pro-Casp8 within the necrosome can be inactivated by phosphorylation at Thr265 (pC8T265). pC8T265 occurs in vitro in various necroptotic cells and in the cecum of TNF-treated mice. p90 RSK is the kinase of pro-Casp8. It is activated by a mechanism that does not need ERK but PDK1, which is recruited to the RIP1-RIP3-MLKL-containing necrosome. Phosphorylation of pro-Casp8 at Thr265 can substitute for zVAD to permit necroptosis in vitro. pC8T265 mimic T265E knockin mice are embryonic lethal due to unconstrained necroptosis, and the pharmaceutical inhibition of RSK-mediated pC8T265 diminishes TNF-induced cecum damage and lethality in mice by halting necroptosis. Thus, phosphorylation of pro-Casp8 at Thr265 by RSK is an intrinsic mechanism for passing the Casp8 checkpoint of necroptosis.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Caspase 8/metabolismo , Necroptose , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Animais , Ceco/lesões , Ceco/patologia , Linhagem Celular , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Mutação/genética , Necroptose/efeitos dos fármacos , Especificidade de Órgãos , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
4.
Nature ; 591(7850): 413-419, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33618348

RESUMO

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.


Assuntos
Genoma Humano/genética , Genômica , Migração Humana/história , China , Produção Agrícola/história , Feminino , Haplótipos/genética , História Antiga , Humanos , Japão , Idioma/história , Masculino , Mongólia , Nepal , Oryza , Polimorfismo de Nucleotídeo Único/genética , Sibéria , Taiwan
5.
Proc Natl Acad Sci U S A ; 121(2): e2219352120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165927

RESUMO

High levels of mitochondrial reactive oxygen species (mROS) are linked to cancer development, which is tightly controlled by the electron transport chain (ETC). However, the epigenetic mechanisms governing ETC gene transcription to drive mROS production and cancer cell growth remain to be fully characterized. Here, we report that protein demethylase PHF8 is overexpressed in many types of cancers, including colon and lung cancer, and is negatively correlated with ETC gene expression. While it is well known to demethylate histones to activate transcription, PHF8 demethylates transcription factor YY1, functioning as a co-repressor for a large set of nuclear-coded ETC genes to drive mROS production and cancer development. In addition to genetically ablating PHF8, pharmacologically targeting PHF8 with a specific chemical inhibitor, iPHF8, is potent in regulating YY1 methylation, ETC gene transcription, mROS production, and cell growth in colon and lung cancer cells. iPHF8 exhibits potency and safety in suppressing tumor growth in cell-line- and patient-derived xenografts in vivo. Our data uncover a key epigenetic mechanism underlying ETC gene transcriptional regulation, demonstrating that targeting the PHF8/YY1 axis has great potential to treat cancers.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , Transformação Celular Neoplásica , Neoplasias Pulmonares/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
6.
Genes Dev ; 33(23-24): 1702-1717, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699778

RESUMO

The establishment of polyubiquitin conjugates with distinct linkages play important roles in the DNA damage response. Much remains unknown about the regulation of linkage-specific ubiquitin signaling at sites of DNA damage. Here we reveal that Cezanne (also known as Otud7B) deubiquitinating enzyme promotes the recruitment of Rap80/BRCA1-A complex by binding to Lys63-polyubiquitin and targeting Lys11-polyubiquitin. Using a ubiquitin binding domain protein array screen, we identify that the UBA domains of Cezanne and Cezanne2 (also known as Otud7A) selectively bind to Lys63-linked polyubiquitin. Increased Lys11-linkage ubiquitination due to lack of Cezanne DUB activity compromises the recruitment of Rap80/BRCA1-A. Cezanne2 interacts with Cezanne, facilitating Cezanne in the recruitment of Rap80/BRCA1-A, Rad18, and 53BP1, in cellular resistance to ionizing radiation and DNA repair. Our work presents a model that Cezanne serves as a "reader" of the Lys63-linkage polyubiquitin at DNA damage sites and an "eraser" of the Lys11-linkage ubiquitination, indicating a crosstalk between linkage-specific ubiquitination at DNA damage sites.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Poliubiquitina/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Chaperonas de Histonas , Humanos , Lisina/metabolismo , Proteínas Nucleares , Análise Serial de Proteínas , Ligação Proteica , Domínios Proteicos , Transporte Proteico/genética , Radiação Ionizante
7.
N Engl J Med ; 388(15): 1396-1404, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36961127

RESUMO

BACKGROUND: Black Americans are exposed to higher annual levels of air pollution containing fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) than White Americans and may be more susceptible to its health effects. Low-income Americans may also be more susceptible to PM2.5 pollution than high-income Americans. Because information is lacking on exposure-response curves for PM2.5 exposure and mortality among marginalized subpopulations categorized according to both race and socioeconomic position, the Environmental Protection Agency lacks important evidence to inform its regulatory rulemaking for PM2.5 standards. METHODS: We analyzed 623 million person-years of Medicare data from 73 million persons 65 years of age or older from 2000 through 2016 to estimate associations between annual PM2.5 exposure and mortality in subpopulations defined simultaneously by racial identity (Black vs. White) and income level (Medicaid eligible vs. ineligible). RESULTS: Lower PM2.5 exposure was associated with lower mortality in the full population, but marginalized subpopulations appeared to benefit more as PM2.5 levels decreased. For example, the hazard ratio associated with decreasing PM2.5 from 12 µg per cubic meter to 8 µg per cubic meter for the White higher-income subpopulation was 0.963 (95% confidence interval [CI], 0.955 to 0.970), whereas equivalent hazard ratios for marginalized subpopulations were lower: 0.931 (95% CI, 0.909 to 0.953) for the Black higher-income subpopulation, 0.940 (95% CI, 0.931 to 0.948) for the White low-income subpopulation, and 0.939 (95% CI, 0.921 to 0.957) for the Black low-income subpopulation. CONCLUSIONS: Higher-income Black persons, low-income White persons, and low-income Black persons may benefit more from lower PM2.5 levels than higher-income White persons. These findings underscore the importance of considering racial identity and income together when assessing health inequities. (Funded by the National Institutes of Health and the Alfred P. Sloan Foundation.).


Assuntos
Poluição do Ar , Suscetibilidade a Doenças , Desigualdades de Saúde , Material Particulado , Grupos Raciais , Fatores Socioeconômicos , Idoso , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Negro ou Afro-Americano/estatística & dados numéricos , Suscetibilidade a Doenças/economia , Suscetibilidade a Doenças/epidemiologia , Suscetibilidade a Doenças/etnologia , Suscetibilidade a Doenças/mortalidade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Medicare/estatística & dados numéricos , Material Particulado/efeitos adversos , Material Particulado/análise , Pobreza/estatística & dados numéricos , Fatores Raciais/estatística & dados numéricos , Grupos Raciais/estatística & dados numéricos , Classe Social , Estados Unidos/epidemiologia , Brancos/estatística & dados numéricos
8.
Proc Natl Acad Sci U S A ; 120(13): e2221984120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940327

RESUMO

Terrestrial reactive oxygen species (ROS) may have played a central role in the formation of oxic environments and evolution of early life. The abiotic origin of ROS on the Archean Earth has been heavily studied, and ROS are conventionally thought to have originated from H2O/CO2 dissociation. Here, we report experiments that lead to a mineral-based source of oxygen, rather than water alone. The mechanism involves ROS generation at abraded mineral-water interfaces in various geodynamic processes (e.g., water currents and earthquakes) which are active where free electrons are created via open-shell electrons and point defects, high pressure, water/ice interactions, and combinations of these processes. The experiments reported here show that quartz or silicate minerals may produce reactive oxygen-containing sites (≡SiO•, ≡SiOO•) that initially emerge in cleaving Si-O bonds in silicates and generate ROS during contact with water. Experimental isotope-labeling experiments show that the hydroxylation of the peroxy radical (≡SiOO•) is the predominant pathway for H2O2 generation. This heterogeneous ROS production chemistry allows the transfer of oxygen atoms between water and rocks and alters their isotopic compositions. This process may be pervasive in the natural environment, and mineral-based production of H2O2 and accompanying O2 could occur on Earth and potentially on other terrestrial planets, providing initial oxidants and free oxygen, and be a component in the evolution of life and planetary habitability.

9.
J Virol ; 98(6): e0015824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38695539

RESUMO

Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.


Assuntos
Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Proteínas com Motivo Tripartido , Proteínas Virais , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/virologia , Rhabdoviridae/genética , Infecções por Rhabdoviridae/virologia , Infecções por Rhabdoviridae/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Transdução de Sinais , Carpas/virologia , Imunidade Inata , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteólise
10.
EMBO Rep ; 24(10): e56098, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522391

RESUMO

A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergicA11-SDH ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors. Furthermore, chemogenetic inhibition of spinal dopamine receptor D1-expressing (DRD1+ ) neurons decreases acute or chronic itch-induced scratching. Mechanistically, spinal DRD1+ neurons are excitatory and mostly co-localize with gastrin-releasing peptide (GRP), an endogenous neuropeptide for itch. In addition, DRD1+ neurons form synapses with GRP receptor-expressing (GRPR+ ) neurons and activate these neurons via AMPA receptor (AMPAR). Finally, spontaneous itch and enhanced acute itch induced by activating spinal DRD1+ neurons are relieved by antagonists against AMPAR and GRPR. Thus, the descending dopaminergic pathway facilitates spinal itch transmission via activating DRD1+ neurons and releasing glutamate and GRP, which directly augments GRPR signaling. Interruption of this descending pathway may be used to treat chronic itch.


Assuntos
Receptores da Bombesina , Medula Espinal , Humanos , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Medula Espinal/metabolismo , Ácido Glutâmico/metabolismo , Dopamina/metabolismo , Prurido/genética , Prurido/metabolismo , Neurônios Dopaminérgicos/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(49): e2215990119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454763

RESUMO

Recent characterization of the obligate episymbiont Saccharibacteria (TM7) belonging to the candidate phyla radiation (CPR) has expanded the extent of microbial diversity. However, the episymbiotic lifestyle of TM7 is still underexploited due to the deficiency of cultivated representatives. Here, we describe gene-targeted TM7 cultivation guided by repurposing epicPCR (emulsion, paired isolation, and concatenation PCR) to capture in situ TM7‒host associations. Using this method, we obtained a novel Saccharibacteria isolate TM7i and its host Leucobacter aridicollis J1 from Cicadae Periostracum, the castoff shell of cicada. Genomic analyses and microscopic characterizations revealed that TM7i could bind to J1 through twitching-like motility mediated by type IV pili (T4P). We further showed that the inhibition of T4P extrusion suppressed the motility and host adherence of TM7i, resulting in its reduced growth. However, the inactivation of T4P had little effect on the growth of TM7i that had already adhered to J1, suggesting the essential role of T4P in host recognition by TM7i. By capturing CPR‒host association and elaborating the T4P-dependent episymbiotic association mechanism, our studies shed light on the distinct yet widespread lifestyle of CPR bacteria.


Assuntos
Actinomycetales , Fímbrias Bacterianas , Fímbrias Bacterianas/genética , Bactérias , Reação em Cadeia da Polimerase , Genômica
12.
Genes Dev ; 31(14): 1469-1482, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28860160

RESUMO

Protection of the stalled replication fork is crucial for responding to replication stress and minimizing its impact on chromosome instability, thus preventing diseases, including cancer. We found a new component, Abro1, in the protection of stalled replication fork integrity. Abro1 deficiency results in increased chromosome instability, and Abro1-null mice are tumor-prone. We show that Abro1 protects stalled replication fork stability by inhibiting DNA2 nuclease/WRN helicase-mediated degradation of stalled forks. Depletion of RAD51 prevents the DNA2/WRN-dependent degradation of stalled forks in Abro1-deficient cells. This mechanism is distinct from the BRCA2-dependent fork protection pathway, in which stable RAD51 filament formation prevents MRE11-dependent degradation of the newly synthesized DNA at stalled forks. Thus, our data reveal a new aspect of regulated protection of stalled replication forks that involves Abro1.


Assuntos
Replicação do DNA , Instabilidade Genômica , Proteínas Associadas à Matriz Nuclear/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Proteína BRCA2/genética , Linhagem Celular , Células Cultivadas , DNA/biossíntese , DNA Helicases/fisiologia , Endodesoxirribonucleases/fisiologia , Proteína Homóloga a MRE11/fisiologia , Camundongos Knockout , Enzimas Multifuncionais/fisiologia , Neoplasias Experimentais/genética , Proteínas Associadas à Matriz Nuclear/genética , Rad51 Recombinase/genética , Estresse Fisiológico , Proteases Específicas de Ubiquitina/genética
13.
Lancet Oncol ; 25(7): 843-852, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852601

RESUMO

BACKGROUND: PD-1 blockade is highly efficacious for mismatch repair-deficient colorectal cancer in both metastatic and neoadjuvant settings. We aimed to explore the activity and safety of neoadjuvant therapy with PD-1 blockade plus an angiogenesis inhibitor and the feasibility of organ preservation in patients with locally advanced mismatch repair-deficient colorectal cancer. METHODS: We initiated a single-arm, open-label, phase 2 trial (NEOCAP) at Sun Yat-sen University Cancer Center and the Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China. Patients aged 18-75 years with untreated mismatch repair-deficient or microsatellite instability-high or POLE/POLD1-mutated locally advanced colorectal cancer (cT3 or N+ for rectal cancer, and T3 with invasion ≥5mm or T4, with or without N+ for colon cancer) and an Eastern Cooperative Oncology Group performance score of 0-1 were enrolled and given 200 mg camrelizumab intravenously on day 1 and 250 mg apatinib orally from day 1-14, every 3 weeks for 3 months followed by surgery or 6 months if patients did not have surgery. Patients who had a clinical complete response did not undergo surgery and proceeded with a watch-and-wait approach. The primary endpoint was the proportion of patients with a pathological or clinical complete response. Eligible enrolled patients who received at least one cycle of neoadjuvant treatment and had at least one tumour response assessment following the baseline assessment were included in the activity analysis, and patients who received at least one dose of study drug were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT04715633) and is ongoing. FINDINGS: Between Sept 29, 2020, and Dec 15, 2022, 53 patients were enrolled; one patient was excluded from the activity analysis because they were found to be mismatch repair-proficient and microsatellite-stable. 23 (44%) patients were female and 29 (56%) were male. The median follow-up was 16·4 (IQR 10·5-23·5) months. 28 (54%; 95% CI 35-68) patients had a clinical complete response and 24 of these patients were managed with a watch-and-wait approach, including 20 patients with colon cancer and multiple primary colorectal cancer. 23 (44%) of 52 patients underwent surgery for the primary tumour, and 14 (61%; 95% CI 39-80) had a pathological complete response. 38 (73%; 95% CI 59-84) of 52 patients had a complete response. Grade 3-5 adverse events occurred in 20 (38%) of 53 patients; the most common were increased aminotransferase (six [11%]), bowel obstruction (four [8%]), and hypertension (four [8%]). Drug-related serious adverse events occurred in six (11%) of 53 patients. One patient died from treatment-related immune-related hepatitis. INTERPRETATION: Neoadjuvant camrelizumab plus apatinib show promising antitumour activity in patients with locally advanced mismatch repair-deficient or microsatellite instability-high colorectal cancer. Immune-related adverse events should be monitored with the utmost vigilance. Organ preservation seems promising not only in patients with rectal cancer, but also in those with colon cancer who have a clinical complete response. Longer follow-up is needed to assess the oncological outcomes of the watch-and-wait approach. FUNDING: The National Natural Science Foundation of China, Guangdong Basic and Applied Basic Research Foundation, and the Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Instabilidade de Microssatélites , Terapia Neoadjuvante , Piridinas , Humanos , Pessoa de Meia-Idade , Feminino , Masculino , Terapia Neoadjuvante/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Piridinas/uso terapêutico , Idoso , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Adulto Jovem , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/administração & dosagem , Adolescente
14.
J Neurosci ; 43(8): 1334-1347, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36653189

RESUMO

Itch is an uncomfortable and complex sensation that elicits the desire to scratch. The nucleus accumbens (NAc) activity is important in driving sensation, motivation, and emotion. Excitatory afferents from the medial prefrontal cortex (mPFC), amygdala, and hippocampus are crucial in tuning the activity of dopamine receptor D1-expressing and D2-expressing medium spiny neurons (Drd1-MSN and Drd2-MSN) in the NAc. However, a cell-type and neural circuity-based mechanism of the NAc underlying acute itch remains unclear. We found that acute itch induced by compound 48/80 (C48/80) decreased the intrinsic membrane excitability in Drd1-MSNs, but not in Drd2-MSNs, in the NAc core of male mice. Chemogenetic activation of Drd1-MSNs alleviated C48/80-induced scratching behaviors but not itch-related anxiety-like behaviors. In addition, C48/80 enhanced the frequency of spontaneous EPSCs (sEPSCs) and reduced the paired-pulse ratio (PPR) of electrical stimulation-evoked EPSCs in Drd1-MSNs. Furthermore, C48/80 increased excitatory synaptic afferents to Drd1-MSNs from the mPFC, not from the basolateral amygdala (BLA) or ventral hippocampus (vHipp). Consistently, the intrinsic excitability of mPFC-NAc projecting pyramidal neurons was increased after C48/80 treatment. Chemogenetic inhibition of mPFC-NAc excitatory synaptic afferents relieved the scratching behaviors. Moreover, pharmacological activation of κ opioid receptor (KOR) in the NAc core suppressed C48/80-induced scratching behaviors, and the modulation of KOR activity in the NAc resulted in the changes of presynaptic excitatory inputs to Drd1-MSNs in C48/80-treated mice. Together, these results reveal the neural plasticity in synapses of NAc Drd1-MSNs from the mPFC underlying acute itch and indicate the modulatory role of the KOR in itch-related scratching behaviors.SIGNIFICANCE STATEMENT Itch stimuli cause strongly scratching desire and anxiety in patients. However, the related neural mechanisms remain largely unclear. In the present study, we demonstrated that the pruritogen compound 48/80 (C48/80) shapes the excitability of dopamine receptor D1-expressing medium spiny neurons (Drd1-MSNs) in the nucleus accumbens (NAc) core and the glutamatergic synaptic afferents from medial prefrontal cortex (mPFC) to these neurons. Chemogenetic activation of Drd1-MSNs or inhibition of mPFC-NAc excitatory synaptic afferents relieves the scratching behaviors. In addition, pharmacological activation of κ opioid receptor (KOR) in the NAc core alleviates C48/80-induced itch. Thus, targeting mPFC-NAc Drd1-MSNs or KOR may provide effective treatments for itch.


Assuntos
Núcleo Accumbens , Receptores Opioides kappa , Camundongos , Masculino , Animais , Núcleo Accumbens/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Receptores de Dopamina D1/metabolismo , Córtex Pré-Frontal/metabolismo
15.
J Neurosci ; 43(16): 2907-2920, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36868854

RESUMO

General anesthesia shares many similarities with natural sleep in behavior and electroencephalogram (EEG) patterns. The latest evidence suggests that general anesthesia and sleep-wake behavior may share overlapping neural substrates. The GABAergic neurons in the basal forebrain (BF) have recently been demonstrated to play a key role in controlling wakefulness. It was hypothesized that BF GABAergic neurons may participate in the regulation of general anesthesia. Here, using in vivo fiber photometry, we found that the activity of BF GABAergic neurons was generally inhibited during isoflurane anesthesia, having obviously decreased during the induction of anesthesia and being gradually restored during the emergence from anesthesia, in Vgat-Cre mice of both sexes. Activation of BF GABAergic neurons with chemogenetic and optogenetic approaches decreased sensitivity to isoflurane, delayed induction, and accelerated emergence from isoflurane anesthesia. Optogenetic activation of BF GABAergic neurons decreased EEG δ power and the burst suppression ratio (BSR) during 0.8% and 1.4% isoflurane anesthesia, respectively. Similar to the effects of activating BF GABAergic cell bodies, photostimulation of BF GABAergic terminals in the thalamic reticular nucleus (TRN) also strongly promoted cortical activation and behavioral emergence from isoflurane anesthesia. Collectively, these results showed that the GABAergic BF is a key neural substrate for general anesthesia regulation that facilitates behavioral and cortical emergence from general anesthesia via the GABAergic BF-TRN pathway. Our findings may provide a new target for attenuating the depth of anesthesia and accelerating emergence from general anesthesia.SIGNIFICANCE STATEMENT The basal forebrain (BF) is a key brain region controlling sleep-wake behavior. Activation of GABAergic neurons in the BF potently promotes behavioral arousal and cortical activity. Recently, many sleep-wake-related brain structures have been reported to participate in the regulation of general anesthesia. However, it is still unclear what role BF GABAergic neurons play in general anesthesia. In this study, we aim to reveal the role of BF GABAergic neurons in behavioral and cortical emergence from isoflurane anesthesia and elucidate the underlying neural pathways. Understanding the specific role of BF GABAergic neurons in isoflurane anesthesia would improve our understanding of the mechanisms of general anesthesia and may provide a new strategy for accelerating emergence from general anesthesia.


Assuntos
Prosencéfalo Basal , Isoflurano , Masculino , Feminino , Camundongos , Animais , Isoflurano/farmacologia , Prosencéfalo Basal/fisiologia , Neurônios GABAérgicos/fisiologia , Sono/fisiologia , Eletroencefalografia , Anestesia Geral
16.
J Cell Physiol ; 239(5): e31250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477420

RESUMO

Parkinson's disease (PD) is the most prevalent neurodegenerative disorder. Neuroinflammation mediated by activated microglia and apoptosis of dopaminergic (DA) neurons in the midbrain are its primary pathological manifestations. Leucine-rich repeat protein kinase 2 (LRRK2) kinase has been observed to increase expression during neuroinflammation, however, the effect of LRRK2 on microglia activation remains poorly understood. In this study, we have established lipopolysaccharide (LPS) treated BV2 cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models for both in vivo and in vitro investigation. Our data in vivo reveal that LRRK2 can promote microglia activation by regulating ferroptosis and activating nuclear factor-κB. Inhibition of LRRK2 expression effectively suppressed the LPS-induced pro-inflammatory cytokines and facilitated the secretion of neuroprotective factors. Importantly, by co-overexpressing LRRK2 and glutathione peroxidase 4 (GPX4), we identified the system Xc-GSH-GPX4 pathway as a crucial component in LRRK2-mediated microglial ferroptosis and inflammatory responses. Using a microglial culture supernatant (MCS) transfer model, we found that inhibiting LRRK2 or downregulating ferroptosis in BV2 cells prevented SH-SY5Y cell apoptosis. Additionally, we observed abundant expression of LRRK2 and P-P65 in the midbrain, which was elevated in the MPTP-induced PD model, along with microglia activation. LRRK2 and P-P65 expression inhibition with PF-06447475 attenuated microglia activation in the nigrostriatal dense part of MPTP-treated mice. Based on our findings, it is evident that LRRK2 plays a critical role in promoting the neuroinflammatory response during the pathogenesis of PD by regulating the system Xc-GSH-GPX4 pathway. Taken together, our data highlights the potential research and therapeutic value of targeting LRRK2 to regulate neuroinflammatory response in PD through ferroptosis.


Assuntos
Ferroptose , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Microglia , Doenças Neuroinflamatórias , Doença de Parkinson , Animais , Humanos , Masculino , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Ferroptose/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Transdução de Sinais , Pirimidinas/farmacologia , Pirróis/farmacologia
17.
BMC Genomics ; 25(1): 283, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500027

RESUMO

MYB transcription factors play an extremely important regulatory role in plant responses to stress and anthocyanin synthesis. Cloning of potato StMYB-related genes can provide a theoretical basis for the genetic improvement of pigmented potatoes. In this study, two MYB transcription factors, StMYB113 and StMYB308, possibly related to anthocyanin synthesis, were screened under low-temperature conditions based on the low-temperature-responsive potato StMYB genes family analysis obtained by transcriptome sequencing. By analyzed the protein properties and promoters of StMYB113 and StMYB308 and their relative expression levels at different low-temperature treatment periods, it is speculated that StMYB113 and StMYB308 can be expressed in response to low temperature and can promote anthocyanin synthesis. The overexpression vectors of StMYB113 and StMYB308 were constructed for transient transformation tobacco. Color changes were observed, and the expression levels of the structural genes of tobacco anthocyanin synthesis were determined. The results showed that StMYB113 lacking the complete MYB domain could not promote the accumulation of tobacco anthocyanins, while StMYB308 could significantly promote the accumulation involved in tobacco anthocyanins. This study provides a theoretical reference for further study of the mechanism of StMYB113 and StMYB308 transcription factors in potato anthocyanin synthesis.


Assuntos
Solanum tuberosum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Antocianinas , Temperatura , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
18.
BMC Genomics ; 25(1): 539, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822248

RESUMO

Squamous promoter binding protein-like (SPL) genes encode plant-specific transcription factors (TFs) that play essential roles in modulating plant growth, development, and stress response. Pea (Pisum sativum L.) is a coarse grain crop of great importance in food production, biodiversity conservation and molecular genetic research, providing genetic information and nutritional resources for improving agricultural production and promoting human health. However, only limited researches on the structure and functions of SPL genes exist in pea (PsSPLs). In this study, we identified 22 PsSPLs and conducted a genome-wide analysis of their physical characteristics, chromosome distribution, gene structure, phylogenetic evolution and gene expression patterns. As a result, the PsSPLs were unevenly distributed on the seven chromosomes of pea and harbored the SBP domain, which is composed of approximately 76 amino acid residues. The phylogenetic analysis revealed that the PsSPLs clustered into eight subfamilies and showed high homology with SPL genes in soybean. Further analysis showed the presence of segmental duplications in the PsSPLs. The expression patterns of 22 PsSPLs at different tissues, developmental stages and under various stimulus conditions were evaluated by qRT-PCR method. It was found that the expression patterns of PsSPLs from the same subfamily were similar in different tissues, the transcripts of most PsSPLs reached the maximum peak value at 14 days after anthesis in the pod. Abiotic stresses can cause significantly up-regulated PsSPL19 expression with spatiotemporal specificity, in addition, four plant hormones can cause the up-regulated expression of most PsSPLs including PsSPL19 in a time-dependent manner. Therefore, PsSPL19 could be a key candidate gene for signal transduction during pea growth and development, pod formation, abiotic stress and plant hormone response. Our findings should provide insights for the elucidating of development regulation mechanism and breeding for resistance to abiotic stress pea.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Pisum sativum , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Família Multigênica , Perfilação da Expressão Gênica , Cromossomos de Plantas/genética
19.
J Am Chem Soc ; 146(12): 8567-8575, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489761

RESUMO

Ferroptosis as a promising method of cancer treatment heavily relies on the intracellular iron ion level. Herein, a new iron-supplement nanodrug was developed by conjugating transferrin-homing peptide T10 on the surface of cross-linked lipoic acid vesicles (T10@cLAV), which could hijack blood transferrin (Tf) and specifically deliver it to tumor cells to elevate the Fe2+ level. Meanwhile, the intracellular degradation product of cLAV, dihydrolipoic acid, could regenerate Fe2+ to further boost the ferroptosis. The results disclosed that T10@cLAV achieved tumor inhibition comparable to that of cisplatin at a dose as low as 5 mg/kg in the HeLa tumor-bearing nude mice model and caused no toxicity at the dose up to 300 mg/kg. This tactful iron-supplement strategy of hijacking blood Tf is superior to the current strategies: one is the induction of intracellular ferritin degradation, which is limited by the low content of ferritin, and the other is the delivery of iron-based materials, which easily causes adverse effects.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Camundongos , Animais , Transferrina/metabolismo , Camundongos Nus , Ferro/metabolismo , Ferritinas , Nanopartículas/química
20.
J Am Chem Soc ; 146(22): 15428-15437, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795044

RESUMO

Chemical recycling to monomers (CRM) offers a promising closed-loop approach to transition from current linear plastic economy toward a more sustainable circular paradigm. Typically, this approach has focused on modulating the ceiling temperature (Tc) of monomers. Despite considerable advancements, polymers with low Tc often face challenges such as inadequate thermal stability, exemplified by poly(γ-butyrolactone) (PGBL) with a decomposition temperature of ∼200 °C. In contrast, floor temperature (Tf)-regulated polymers, particularly those synthesized via the ring-opening polymerization (ROP) of macrolactones, inherently exhibit enhanced thermodynamic stability as the temperature increases. However, the development of those Tf regulated chemically recyclable polymers remains relatively underexplored. In this context, by judicious design and efficient synthesis of a biobased macrocyclic diester monomer (HOD), we developed a type of Tf -regulated closed-loop chemically recyclable poly(ketal-ester) (PHOD). First, the entropy-driven ROP of HOD generated high-molar mass PHOD with exceptional thermal stability with a Td,5% reaching up to 353 °C. Notably, it maintains a high Td,5% of 345 °C even without removing the polymerization catalyst. This contrasts markedly with PGBL, which spontaneously depolymerizes back to the monomer above its Tc in the presence of catalyst. Second, PHOD displays outstanding closed-loop chemical recyclability at room temperature within just 1 min with tBuOK. Finally, copolymerization of pentadecanolide (PDL) with HOD generated high-performance copolymers (PHOD-co-PPDL) with tunable mechanical properties and chemical recyclability of both components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA