Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 173(Pt A): 105828, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36243381

RESUMO

The ongoing global pandemic of novel coronavirus pneumonia (COVID-19) caused by the SARS-CoV-2 has a significant impact on global health and economy system. In this context, there have been some landmark advances in vaccine development. Over 100 new coronavirus vaccine candidates have been approved for clinical trials, with ten WHO-approved vaccines including four inactivated virus vaccines, two mRNA vaccines, three recombinant viral vectored vaccines and one protein subunit vaccine on the "Emergency Use Listing". Although the SARS-CoV-2 has an internal proofreading mechanism, there have been a number of mutations emerged in the pandemic affecting its transmissibility, pathogenicity and immunogenicity. Of these, mutations in the spike (S) protein and the resultant mutant variants have posed new challenges for vaccine development and application. In this review article, we present an overview of vaccine development, the prevalence of new coronavirus variants and their impact on protective efficacy of existing vaccines and possible immunization strategies coping with the viral mutation and diversity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Desenvolvimento de Vacinas , Vacinas de Produtos Inativados
2.
Chemistry ; 28(6): e202103043, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34873758

RESUMO

Mn2+ doped colloidal three-dimensional (3D) lead halide perovskite nanocrystal (PNC) has attracted intensive research attention; however, the low exciton binding energy and fatal optical instability of 3D PNC seriously hinder the optoelectronic application. Therefore, it remains significant to explore new stable host perovskite with strongly bound exciton to realize more desirable luminescent property. In this work, we utilized bulk one-dimensional (1D) hybrid perovskite of [AEP]PbBr5 ⋅ H2 O (AEP=N-aminoethylpiperazine) as structural platform to rationally optimize the luminescent property by a controllable Mn2+ doping strategy. Significantly, the series of Mn2+ -doped 1D [AEP]PbBr5 ⋅ H2 O show enhanced energy transfer efficiency from the strongly bound excitons of host material to 3d electrons of Mn2+ ions, resulting in tunable broadband light emissions from weak yellow to strong red spectral range with highest photoluminescence quantum yield up to 28.41 %. More importantly, these Mn2+ -doped 1D perovskites display ultrahigh structural and optical stabilities in humid atmosphere, water and high temperature exceeding the conventional 3D PNC. Combined highly efficient, tunable and stable broadband light emissions enable Mn2+ -doped 1D perovskite as excellent down-converting phosphor showcasing the potential application in white light emitting diode. This work not only provides a profound understanding of low-dimensional perovskites but also opens a new way to rationally design high-performance broadband light emitting perovskites for solid-state lighting and displaying devices.

3.
Angew Chem Int Ed Engl ; 61(35): e202206437, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35670095

RESUMO

A convenient and rapid detection method for methanol in ethanol remains a major challenge due to their indistinguishable physical properties. Herein, a novel fluorescence probe based on perovskite was successfully designed to overcome this bottleneck. We report a new zero-dimensional (0D) hybrid perovskite of [MP]2 Inx Sb1-x Cl7 ⋅ 6 H2 O (MP=2-methylpiperazine) displaying an unusual green light emission with near-unity photoluminescence quantum yield. Remarkably, this 0D perovskite exhibits reversible methanol-response luminescence switching between green and yellow color but fail in any other organic vapors. Even for blended alcohol solutions, the luminescent probe exhibits excellent sensing performance with multiple superiorities of rapid response time (30 s) and ultra-low detection limit (40 ppm), etc. Therefore, this 0D perovskite can be utilized as a perfect fluorescence probe to detect traces of methanol from ethanol with ultrahigh sensitivity, selectivity and repeatability. To the best of our knowledge, this work represents the first perovskite as fluorescence probe for methanol with wide potential in environmental monitoring and methanol detection, etc.

4.
Inorg Chem ; 60(22): 16906-16910, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34726390

RESUMO

Herein, a new organic-inorganic hybrid cuprous iodide of [(Me)2-DABCO]Cu6I8 was prepared and structurally characterized with a novel three-dimensional (3D) [Cu6I8]2- framework. Significantly, this 3D cuprous iodide displays infrequent broadband red-to-near-infrared light emission (600-1000 nm) stemming from the radiative recombination of self-trapped excitons.

5.
Int J Syst Evol Microbiol ; 70(4): 2204-2210, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32038002

RESUMO

Two Gram-stain-positive, catalase-positive and oxidase-negative, aerobic, non-motile, cellobiose-utilizing, short-rod-shaped strains (Z28T and Z29) were isolated from faeces of Tibetan antelope (Pantholops hodgsonii) collected on the Qinghai-Tibet Plateau. Strain Z28T shared 98.1, 98.0, 97.8 and 97.4 % 16S rRNA gene similarity, 24.1, 22.8, 23.2 and 26.3 % digital DNA-DNA hybridization relatedness and 80.8, 80.0, 80.7 and 80.9 % average nucleotide identity values with Cellulomonas oligotrophica DSM 24482T, Cellulomonas flavigena DSM 20109T, Cellulomonas iranensis DSM 14785T and Cellulomonas terrae JCM 14899T, respectively. Results from further phylogenetic analyses based on the 16S rRNA gene and 148 core genes indicated that strains Z28T and Z29 were closest to C. oligotrophica DSM 24482T and C. flavigena DSM 20109T, but clearly separated from the currently recognized species of the genus Cellulomonas. The genomic DNA G+C content of strain Z28T was 75.3 mol%. The major cellular fatty acids were anteiso-C15 : 0, anteiso-C15 : 1 A, C16 : 0 and anteiso-C17 : 0. Ribose and mannose were detected as the whole-cell sugars. The major respiratory quinone was MK-9(H4) and ornithine was the diamino acid of the cell wall. The polar lipids present in strain Z28T were phosphatidylethanolamine, five phospholipids, two aminophospholipids, aminolipid and three unidentified lipids. Comparison of phenotypic and phylogenetic features between the two strains and the related organisms revealed that Z28T and Z29 represent a novel species of the genus Cellulomonas, for which the name Cellulomonas shaoxiangyii sp. nov. is proposed. The type strain is Z28T (=CGMCC 1.16477T=DSM 106200T).


Assuntos
Antílopes/microbiologia , Cellulomonas/classificação , Fezes/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , Cellulomonas/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Ornitina/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet , Vitamina K 2/análogos & derivados , Vitamina K 2/química
6.
Int J Syst Evol Microbiol ; 69(4): 1237-1243, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30785389

RESUMO

Three Gram-stain-positive, catalase-negative, α-haemolytic, chain-forming and coccus-shaped microorganisms (strains Z15T, Z1 and Z2) were isolated from feces of Tibetan antelopes collected from the Qinghai-Tibet plateau, PR China. The results of 16S rRNA gene sequence studies indicated that Z15T shared 94.5, 93.1 and 92.2 % similarity with Streptococcus pantholopis DSM 102135T, Streptococcus ursoris NUM 1615T and Streptococcus dentapri NUM 1529T, respectively. rpoB and groEL-based sequence analysis of our three novel isolates revealed interspecies divergence of 16.7 and 14.3 % from Streptococcus pantholopis DSM 102135T. The genomic DNA G+C content of Z15T is 42.48 mol%. Z15T has an average nucleotide identity (ANI) value of 81.19 % with S. pantholopis DSM 102135T and a DNA-DNA relatedness value of less than 70 % in the in-silico DNA-DNA hybridization (isDDH) with other species of genus Streptococcus deposited in the GenBank database. A whole-genome phylogenetic tree based on 246 core genes of 78 genomes of members of the genus Streptococcusindicated that Z15T represents a member of genus Streptococcus but one well separated from the currently recognized species. Z15T contains C18 : 1ω7c (25.5 %), C18 : 1ω9c (19.6 %), C16 : 0 (17.5 %) and C16 : 1ω9c (13.3 %) as its major cellular fatty acids. According to the morphological, biochemical and molecular phylogenetic features of the three novel isolates, they represent a novel species of the genus Streptococcus, and Streptococcus chenjunshii sp. nov. is thus proposed. The type strain is Z15T (=CGMCC 1.16529=DSM 106182).


Assuntos
Antílopes/microbiologia , Filogenia , Streptococcus/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes/microbiologia , Genes Bacterianos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptococcus/isolamento & purificação , Tibet
7.
Int J Syst Evol Microbiol ; 69(10): 2979-2986, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31145678

RESUMO

Two Gram-stain-negative, catalase- and oxidase-positive, non-spore-forming, aerobic, motile, flagellated, and coccus-shaped strains (Z23T and Z24) were isolated from faeces of Tibetan antelopes (Pantholops hodgsonii) on the Qinghai-Tibet Plateau, PR China. Results of the morphological, biochemical, and phylogenetic studies indicated that they were similar to each other, but distinct from existing species of the genus Roseomonas. The proposed type strain, Z23T, had 97.8, 97.1 and 96.8 % 16S rRNA similarity to Roseomonas ludipueritiae DSM 14915T, Roseomonas aerofrigidensis JCM 31878T and Roseomonas aerophila KACC 16529T. Results from further phylogenetic analyses based on the 16S rRNA gene and 857 core genes indicated that the two strains were members of Roseomonas, but clearly separated from the currently recognized species. Strains Z23T had 43.8 %, 25.0 % DNA-DNA relatedness and 91.2, 81.3 % ANI values with R. ludipueritiae DSM 14915T and R. aerophila KACC 16529T. The genomic DNA G+C content of strain Z23T was 68.6 mol%. The major cellular fatty acids of strain Z23T were C18 : 1ω7c and/or C18 : 1ω6c and C19 : 0cyclo ω8c. The cell-wall sugars included glucose, rhamnose and ribose. Q-10 was the sole respiratory quinone, and spermidine was the major polyamine component. Polar lipids present in strain Z23T were phosphatidylcholine, diphosphatidylglycerol, phosphatidylethanolamine, aminophospholipid, phosphatidylglycerol, three aminolipids, two phospholipids and two unidentified lipids. Based on the distinct differences from other Roseomonas species judged from the genotypic and phenotypic data, a novel species represented by Z23T and Z24, Roseomonas wenyumeiae sp. nov., is proposed. The type strain is Z23T (=CGMCC 1.16540T=DSM 106207T).


Assuntos
Antílopes/microbiologia , Methylobacteriaceae/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes/microbiologia , Methylobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
8.
Microb Cell Fact ; 17(1): 120, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064437

RESUMO

For years, microbes have been widely applied as chassis in the construction of synthetic metabolic pathways. However, the lack of in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. In recent years, multiple methods have been applied to the construction of small metabolic clusters by spatial organization of heterologous metabolic enzymes. These methods mainly focused on using engineered molecules to bring the enzymes into close proximity via different interaction mechanisms among proteins and nucleotides and have been applied in various heterologous pathways with different degrees of success while facing numerous challenges. In this paper, we mainly reviewed some of those notable advances in designing and creating approaches to achieve spatial organization using different intermolecular interactions. Current challenges and future aspects in the further application of such approaches are also discussed in this paper.


Assuntos
Engenharia Metabólica/métodos , Redes e Vias Metabólicas
9.
J Exp Bot ; 67(6): 1935-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26873979

RESUMO

Accumulating evidence indicates that plant MYB transcription factors participate in defense against pathogen attack, but their regulatory targets and related signaling processes remain largely unknown. Here, we identified a defense-related MYB gene (GhMYB108) from upland cotton (Gossypium hirsutum) and characterized its functional mechanism. Expression of GhMYB108 in cotton plants was induced by Verticillium dahliae infection and responded to the application of defense signaling molecules, including salicylic acid, jasmonic acid, and ethylene. Knockdown of GhMYB108 expression led to increased susceptibility of cotton plants to V. dahliae, while ecotopic overexpression of GhMYB108 in Arabidopsis thaliana conferred enhanced tolerance to the pathogen. Further analysis demonstrated that GhMYB108 interacted with the calmodulin-like protein GhCML11, and the two proteins form a positive feedback loop to enhance the transcription of GhCML11 in a calcium-dependent manner. Verticillium dahliae infection stimulated Ca(2+) influx into the cytosol in cotton root cells, but this response was disrupted in both GhCML11-silenced plants and GhMYB108-silenced plants in which expression of several calcium signaling-related genes was down-regulated. Taken together, these results indicate that GhMYB108 acts as a positive regulator in defense against V. dahliae infection by interacting with GhCML11. Furthermore, the data also revealed the important roles and synergetic regulation of MYB transcription factor, Ca(2+), and calmodulin in plant immune responses.


Assuntos
Retroalimentação Fisiológica , Gossypium/imunologia , Gossypium/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Verticillium/fisiologia , Arabidopsis/genética , Cálcio/metabolismo , Sinalização do Cálcio/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gossypium/genética , Doenças das Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Domínios Proteicos , Frações Subcelulares/metabolismo , Transativadores/metabolismo , Transcrição Gênica
10.
Plant Cell ; 25(11): 4421-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24220634

RESUMO

LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase-box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits.


Assuntos
Parede Celular/metabolismo , Fibra de Algodão , Gossypium/citologia , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Actinas/metabolismo , Núcleo Celular/metabolismo , Parede Celular/genética , Parede Celular/ultraestrutura , Clonagem Molecular , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/efeitos dos fármacos , Gossypium/genética , Peróxido de Hidrogênio/farmacologia , Lignina/metabolismo , Filogenia , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos
11.
Zoo Biol ; 34(1): 80-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25486916

RESUMO

Crested ibis (Nipponia nippon), an endan gered native bird, was called the "precious stone" of oriental birds. N. nippon was considered a critically endangered species in the IUCN Red List of Threatened Species and a first-class national protected animal in China. The Chinese government had exerted considerable effort to protect the N. nippon population. An effective approach to increase the number of these birds was captive breeding. However, several pathogens, including parasites, could jeopardize the health of this species. The present study used the fecal flotation method to determine prevalence of intestinal parasites in fresh stool samples by wet mount smearing and iodine staining. Samples were obtained from 63 randomly selected crested ibis bred in Shaanxi Rare Wildlife Rescuing and Breeding Research Center in Zhouzhi County, Xi'an City, Shaanxi Province, China. In the 63 captive individuals, 38 were found positive for intestinal parasites (60.3%, 38/63). Of positive birds, high prevalence of Ascaris spp. (84.2%, 32/38) and Capillaria caudinflata (50.0%, 19/38) were detected. Coccidea (7.8%, 3/38), Fasciolidae (23.7%, 9/38), Blastocystis spp. (15.8%, 6/38), and Entamoeba histolytica (7.8%, 3/38) showed relatively low prevalence rates. This study focuses on the morphological identification of Ascaris spp. and C. caudinflata and their transmission in the N. nippon population. We introduce strategies to improve the breeding management of the birds, enhance their health, and stimulate population productivity.


Assuntos
Animais de Zoológico/parasitologia , Ascaríase/veterinária , Ascaris , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Capillaria , Infecções por Enoplida/veterinária , Animais , Ascaríase/epidemiologia , Aves , Cruzamento/métodos , China/epidemiologia , Espécies em Perigo de Extinção , Infecções por Enoplida/epidemiologia , Fezes/parasitologia , Intestinos/parasitologia , Prevalência
12.
Plant Cell Physiol ; 55(1): 148-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24214268

RESUMO

Examination of aquaporin (AQP) membrane channels in extremophile plants may increase our understanding of plant tolerance to high salt, drought or other conditions. Here, we cloned a tonoplast AQP gene (TsTIP1;2) from the halophyte Thellungiella salsuginea and characterized its biological functions. TsTIP1;2 transcripts accumulate to high levels in several organs, increasing in response to multiple external stimuli. Ectopic overexpression of TsTIP1;2 in Arabidopsis significantly increased plant tolerance to drought, salt and oxidative stresses. TsTIP1;2 had water channel activity when expressed in Xenopus oocytes. TsTIP1;2 was also able to conduct H2O2 molecules into yeast cells in response to oxidative stress. TsTIP1;2 was not permeable to Na(+) in Xenopus oocytes, but it could facilitate the entry of Na(+) ions into plant cell vacuoles by an indirect process under high-salinity conditions. Collectively, these data showed that TsTIP1;2 could mediate the conduction of both H2O and H2O2 across membranes, and may act as a multifunctional contributor to survival of T. salsuginea in highly stressful habitats.


Assuntos
Aquaporinas/metabolismo , Brassicaceae/fisiologia , Estresse Fisiológico , Vacúolos/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/fisiologia , Transporte Biológico/efeitos dos fármacos , Brassicaceae/efeitos dos fármacos , Brassicaceae/genética , Clonagem Molecular , Difusão , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Filogenia , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Vacúolos/efeitos dos fármacos , Água/metabolismo , Xenopus
13.
Plant Physiol ; 162(3): 1669-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23715527

RESUMO

Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.


Assuntos
Gossypium/citologia , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Gravitropismo/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Tricomas/genética , Tricomas/metabolismo
14.
Cell Death Dis ; 15(2): 161, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383507

RESUMO

Oxidative stress dysfunction has recently been found to be involved in the pathogenesis of premature ovarian insufficiency (POI). Previously, we found that advanced oxidation protein products (AOPPs) in plasma were elevated in women with POI and had an adverse effect on granulosa cell proliferation. However, the mechanism underlying the effects of AOPPs on autophagy-lysosome pathway regulation in granulosa cells remains unclear. In this study, the effect of AOPPs on autophagy and lysosomal biogenesis and the underlying mechanisms were explored by a series of in vitro experiments in KGN and COV434 cell lines. AOPP-treated rat models were employed to determine the negative effect of AOPPs on the autophagy-lysosome systems in vivo. We found that increased AOPP levels activated the mammalian target of rapamycin (mTOR) pathway, and inhibited the autophagic response and lysosomal biogenesis in KGN and COV434 cells. Furthermore, scavenging of reactive oxygen species (ROS) with N-acetylcysteine and blockade of the mTOR pathway with rapamycin or via starvation alleviated the AOPP-induced inhibitory effects on autophagy and lysosomal biogenesis, suggesting that these effects of AOPPs are ROS-mTOR dependent. The protein expression and nuclear translocation of transcription factor EB (TFEB), the key regulator of lysosomal and autophagic function, were also impaired by the AOPP-activated ROS-mTOR pathway. In addition, TFEB overexpression attenuated the AOPP-induced impairment of autophagic flux and lysosomal biogenesis in KGN and COV434 cells. Chronic AOPP stimulation in vivo also impaired autophagy and lysosomal biogenesis in granulosa cells of rat ovaries. The results highlight that AOPPs lead to impairment of autophagic flux and lysosomal biogenesis via ROS-mTOR-TFEB signaling in granulosa cells and participate in the pathogenesis of POI.


Assuntos
Produtos da Oxidação Avançada de Proteínas , Serina-Treonina Quinases TOR , Humanos , Ratos , Feminino , Animais , Produtos da Oxidação Avançada de Proteínas/metabolismo , Produtos da Oxidação Avançada de Proteínas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Células da Granulosa/metabolismo , Mamíferos
15.
Plant Physiol ; 159(2): 835-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492844

RESUMO

The BLADE-ON-PETIOLE (BOP) genes of Arabidopsis (Arabidopsis thaliana) have been shown to play an essential role in floral abscission by specializing the abscission zone (AZ) anatomy. However, the molecular and cellular mechanisms that underlie differentiation of the AZ are largely unknown. In this study, we identified a tobacco (Nicotiana tabacum) homolog of BOP (designated NtBOP2) and characterized its cellular function. In tobacco plants, the NtBOP2 gene is predominantly expressed at the base of the corolla in an ethylene-independent manner. Both antisense suppression of NtBOP genes and overexpression of NtBOP2 in tobacco plants caused a failure in corolla shedding. Histological analysis revealed that the differentiation of the corolla AZ was blocked in the transgenic flowers. This blockage was due to uncontrolled cell elongation at the region corresponding to wild-type AZ. The role of NtBOP2 in regulating cell elongation was further demonstrated in Bright Yellow 2 single cells: perturbation of NtBOP2 function by a dominant negative strategy led to the formation of abnormally elongated cells. Subcellular localization analysis showed that NtBOP2-green fluorescent protein fusion proteins were targeted to both the nucleus and cytoplasm. Yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays demonstrated that NtBOP2 proteins interacted with TGA transcription factors. Taken together, these results indicated that NtBOP2 mediated the differentiation of AZ architecture by controlling longitudinal cell growth. Furthermore, NtBOP2 may achieve this outcome through interaction with the TGA transcription factors and via an ethylene-independent signaling pathway.


Assuntos
Diferenciação Celular , Flores/ultraestrutura , Nicotiana/genética , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Crescimento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Eletrônica , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Nicotiana/citologia , Nicotiana/fisiologia , Técnicas do Sistema de Duplo-Híbrido
16.
Front Endocrinol (Lausanne) ; 14: 1195354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600719

RESUMO

Objective: The effect of passive smoking exposure on the risk of type 2 diabetes has not been systematically studied. A meta-analysis was conducted to assess the association between passive smoking exposure and the risk of diabetes. Methods: We searched three major databases up to 31 October 2022 to identify relevant prospective cohort studies on the association between passive smoking and the risk of type 2 diabetes. The pooled relative risk (RR) and 95% confidence interval (CI) for the association between passive smoking exposure and the risk of type 2 diabetes were analyzed using a fixed-effect model. Results: Ten prospective cohort studies were included in this meta-analysis, with a total of 251,620 participants involved. The pooled RR showed a significantly positive association between nonsmokers exposed to passive smoking and type 2 diabetes as compared to non-smokers who were not exposed to passive smoking [RR = 1.27; 95% CI (1.19, 1.36); p < 0.001]. Sensitivity analysis indicated that the pooled RR was not substantially affected by any of the individual studies. Conclusion: Exposure to passive smoking increases the risk of type 2 diabetes. This study may have a positive effect on the prevention of type 2 diabetes. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023372532.


Assuntos
Diabetes Mellitus Tipo 2 , Poluição por Fumaça de Tabaco , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Poluição por Fumaça de Tabaco/efeitos adversos , Estudos Prospectivos , Bases de Dados Factuais
17.
J Ovarian Res ; 16(1): 2, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600288

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) patients are predisposed to metabolic disturbances, including in lipid metabolism and glucose metabolism, and metabolic disorders appear to be a prerequisite of the typical long-term complications of POI, such as cardiovascular diseases or osteoporosis. However, the metabolic changes underlying the development of POI and its subsequent complications are incompletely understood, and there are few studies characterizing the disturbed metabolome in POI patients. The aim of this study was to characterize the plasma metabolome in POI by using ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) metabolomics and to evaluate whether these disturbances identified in the plasma metabolome relate to ovarian reserve and have diagnostic value in POI. METHODS: This observational study recruited 30 POI patients and 30 age- and body mass index (BMI)-matched controls in the Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, from January 2018 to October 2020. Fasting venous blood was collected at 9:00 am on days 2-4 of the menstrual cycle and centrifuged for analysis. An untargeted quantitative metabolomic analysis was performed using UHPLC-MS/MS. RESULTS: Our study identified 48 upregulated and 21 downregulated positive metabolites, and 13 upregulated and 48 downregulated negative metabolites in the plasma of POI patients. The differentially regulated metabolites were involved in pathways such as caffeine metabolism and ubiquinone and other terpenoid-quinone biosynthesis. Six metabolites with an AUC value > 0.8, including arachidonoyl amide, 3-hydroxy-3-methylbutanoic acid, dihexyl nonanedioate, 18-HETE, cystine, and PG (16:0/18:1), were correlated with ovarian reserve and thus have the potential to be diagnostic biomarkers of POI. CONCLUSION: This UHPLC-MS/MS untargeted metabolomics study revealed differentially expressed metabolites in the plasma of patients with POI. The differential metabolites may not only be involved in the aetiology of POI but also contribute to its major complications. These findings offer a panoramic view of the plasma metabolite changes caused by POI, which may provide useful diagnostic and therapeutic clues for POI disease.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Feminino , Humanos , Espectrometria de Massas em Tandem , Metaboloma , Ciclo Menstrual , Metabolômica
18.
Plant Cell Environ ; 35(3): 588-600, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21988377

RESUMO

Suaeda salsa is a euhalophytic plant that is tolerant to coastal seawater salinity. In this study, we cloned a cDNA encoding an 8.4 kDa chloroplast outer envelope protein (designated as SsOEP8) from S. salsa and characterized its cellular function. Steady-state transcript levels of SsOEP8 in S. salsa were up-regulated in response to oxidative stress. Consistently, ectopic expression of SsOEP8 conferred enhanced oxidative stress tolerance in transgenic Bright Yellow 2 (BY-2) cells and Arabidopsis, in which H(2) O(2) content was reduced significantly in leaf cells. Further studies revealed that chloroplasts aggregated to the sides of mesophyll cells in transgenic Arabidopsis leaves, and this event was accompanied by inhibited expression of genes encoding proteins for chloroplast movements such as AtCHUP1, a protein involved in actin-based chloroplast positioning and movement. Moreover, organization of actin cytoskeleton was found to be altered in transgenic BY-2 cells. Together, these results suggest that SsOEP8 may play a critical role in oxidative stress tolerance by changing actin cytoskeleton-dependent chloroplast distribution, which may consequently lead to the suppressed production of reactive oxygen species (ROS) in chloroplasts. One significantly novel aspect of this study is the finding that the small chloroplast envelope protein is involved in oxidative stress tolerance.


Assuntos
Arabidopsis/fisiologia , Chenopodiaceae/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Estresse Oxidativo , Actinas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Células Cultivadas , Chenopodiaceae/metabolismo , Proteínas de Cloroplastos/genética , Clonagem Molecular , Citoesqueleto/metabolismo , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
19.
J Integr Plant Biol ; 54(6): 412-21, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22583823

RESUMO

AaNhaD, a gene isolated from the soda lake alkaliphile Alkalimonas amylolytica, encodes a Na(+) /H(+) antiporter crucial for the bacterium's resistance to salt/alkali stresses. However, it remains unknown whether this type of bacterial gene may be able to increase the tolerance of flowering plants to salt/alkali stresses. To investigate the use of extremophile genetic resources in higher plants, transgenic tobacco BY-2 cells and plants harboring AaNhaD were generated and their stress tolerance was evaluated. Ectopic expression of AaNhaD enhanced the salt tolerance of the transgenic BY-2 cells in a pH-dependent manner. Compared to wild-type controls, the transgenic cells exhibited increased Na(+) concentrations and pH levels in the vacuoles. Subcellular localization analysis indicated that AaNhaD-GFP fusion proteins were primarily localized in the tonoplasts. Similar to the transgenic BY-2 cells, AaNhaD-overexpressing tobacco plants displayed enhanced stress tolerance when grown in saline-alkali soil. These results indicate that AaNhaD functions as a pH-dependent tonoplast Na(+) /H(+) antiporter in plant cells, thus presenting a new avenue for the genetic improvement of salinity/alkalinity tolerance.


Assuntos
Gammaproteobacteria/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/genética , Sódio/metabolismo , Linhagem Celular , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Nicotiana/metabolismo , Vacúolos/metabolismo
20.
Mol Med Rep ; 25(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34812477

RESUMO

Simvastatin exerts a protective effect during sepsis (SP) in animal models; however, the underlying mechanism is not completely understood, particularly in human SP. Neutrophils are a critical effector in the host inflammatory response to SP. Therefore, the present study aimed to investigate the effect of simvastatin on neutrophils in human SP. Neutrophils were isolated from the peripheral venous blood of adult patients with SP and healthy volunteers (HP). Cell viability was analyzed using the MTT assay. Intracellular reactive oxygen species (ROS) generation and the concentrations of inflammatory mediators were also assessed using flow cytometry and ELISA. The results demonstrated that the cell viability of neutrophils from the SP group was significantly decreased compared with that in the HP group, and that treatment with simvastatin partly reversed the reduced cell viability. Furthermore, simvastatin administration significantly decreased ROS production and the concentrations of TNF­α and IL­6, which were significantly increased in neutrophils isolated from the SP group. Simvastatin also enhanced autophagy induction, as indicated by the promotion of the conversion of LC3I to LC3II and the increased expression levels of Beclin 1 in SP neutrophils. Treatment with 3­methyladenine, an autophagy inhibitor, completely blocked the protective effects of simvastatin on neutrophils from SP, including the effects of simvastatin on the inhibition of inflammation, oxidative stress and improving cell viability. Collectively, the present study provided evidence for the simvastatin­induced autophagic process of neutrophils involved in human SP, which protects neutrophils and partially attenuates the inflammatory response and oxidative stress. Therefore, the augmentation of neutrophil autophagy may serve as a potential therapeutic target for patients with SP.


Assuntos
Autofagia/efeitos dos fármacos , Inflamação/tratamento farmacológico , Neutrófilos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sepse/metabolismo , Sinvastatina/farmacologia , Adulto , Idoso , Animais , Proteína Beclina-1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA