Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Med Sci Monit ; 28: e937100, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864726

RESUMO

BACKGROUND Studies on the relationship between serum creatinine and the prognosis of prostate cancer have been very limited. The aim of this study was to investigate the role of serum creatinine in the prognostic risk stratification of patients with prostate cancer. MATERIAL AND METHODS We identified 1134 eligible patients from the "Prostate Cancer Data Set" in the National Clinical Medical Science Data Center. Patients with prostate cancer were divided high- and low-risk prognostic groups according to prostate-specific antigen levels and Gleason scores and were divided into 5 groups according to serum creatinine quintile: Q1 (<70.1 umol/L), Q2 (70.1-76.8 umol/L), Q3 (76.8-83.4 umol/L), Q4 (83.4-92.1 umol/L), and Q5 (>92.1 umol/L). Multivariate logistic regression and a multiple restricted cubic spline method were used to evaluate the relationship between serum creatinine level and the level of prostate cancer prognostic risk. RESULTS Of the 1134 patients with prostate cancer, 134 (11.8%) had a high-risk prognosis. Compared with the Q2 group (the reference group), the lowest serum creatinine levels in the Q1 group and the highest serum creatinine levels in groups Q5, Q3, and Q4 were associated with a high-risk prognosis, and this association remained significant after adjusting for confounders. The multiple restricted cubic spline regression model showed the relationship between serum creatinine level and high-risk prognosis was U-shaped. CONCLUSIONS Serum creatinine level was an independent predictor of high-risk prognosis. Controlling serum creatinine levels between 70.1 and 76.8 umol/L in patients with prostatic cancer may benefit the prognosis of patients with prostatic cancer.


Assuntos
Neoplasias da Próstata , Creatinina , Humanos , Masculino , Gradação de Tumores , Prognóstico , Medição de Risco
2.
J Cell Mol Med ; 24(17): 10202-10215, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33107155

RESUMO

Current treatments including androgen deprivation fail to prevent prostate cancer (PrCa) from progressing to castration-resistant PrCa (CRPC). Accumulating evidence highlights the relevance of prostate-specific antigen (PSA) in the development and progression of PrCa. The underlying mechanism whereby PSA functions in PrCa, however, has yet been elucidated. We demonstrated that PSA knockdown attenuated tumorigenesis and metastasis of PrCa C4-2 cells in vitro and in vivo, whereas promoted the apoptosis in vitro. To illuminate the comprehensive role of PSA in PrCa, we performed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the proteomic change induced by PSA knockdown. Among 121 differentially expressed proteins, 67 proteins were up-regulated, while 54 proteins down-regulated. Bioinformatics analysis was used to explore the mechanism through which PSA exerts influence on PrCa. Protein-protein interaction analysis showed that PSA may mediate POTEF, EPHA3, RAD51C, HPGD and MCM4 to promote the initiation and progression of PrCa. We confirmed that PSA knockdown induced the up-regulation of MCM4 and RAD51C, while it down-regulated POTEF and EPHA3; meanwhile, MCM4 was higher in PrCa para-cancerous tissue than in cancerous tissue, suggesting that PSA may facilitate the tumorigenesis by mediating MCM4. Our findings suggest that PSA plays a comprehensive role in the development and progression of PrCa.


Assuntos
Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Proteoma/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Masculino , Mapas de Interação de Proteínas/fisiologia , Proteômica/métodos , Regulação para Cima/fisiologia
3.
iScience ; 26(12): 108523, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38162032

RESUMO

Prostate cancer (PCa) is one of the most common malignant diseases of urinary system and has poor prognosis after progression to castration-resistant prostate cancer (CRPC), and increased cytosine methylation heterogeneity is associated with the more aggressive phenotype of PCa cell line. Activation-induced cytidine deaminase (AID) is a multifunctional enzyme and contributes to antibody diversification. However, the dysregulation of AID participates in the progression of multiple diseases and related with certain oncogenes through demethylation. Nevertheless, the role of AID in PCa remains elusive. We observed a significant upregulation of AID expression in PCa samples, which exhibited a negative correlation with E-cadherin expression. Furthermore, AID expression is remarkably higher in CRPC cells than that in HSPC cells, and AID induced the demethylation of CXCL12, which is required to stabilize the Wnt signaling pathway executor ß-catenin and EMT procedure. Our study suggests that AID drives CRPC metastasis by demethylation and can be a potential therapeutic target for CRPC.

4.
DNA Cell Biol ; 39(7): 1299-1312, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32551879

RESUMO

Although advances have been made in the development of antiangiogenesis targeted therapy and surgery, metastatic clear cell renal cell carcinoma (ccRCC) is still incurable. Activation-induced cytidine deaminase (AID) is mainly expressed in a variety of germ and somatic cells, and induces somatic hypermutation and class-switch recombination, playing a vital role in antibody diversification. We confirmed that AID was expressed at a higher level in ccRCC tissues than in the corresponding nontumor renal tissues. We explored the impact of AID on ccRCC proliferation, invasion, and migration. In 769-p and 786-0 cells, expression of an AID-specific short hairpin RNA significantly reduced AID expression, which markedly inhibited tumor cell invasion, proliferation, and migration. Previous studies showed that AID is associated with Wnt ligand secretion mediator (WLS/GPR177), cyclin-dependent kinase 4 (CDK4), and stromal cell-derived factor-1 (SDF-1/CXCL12) regulation, which was further confirmed in human ccRCC tissues. Therefore, we studied the relationship between AID and these three molecules, and the impact of AID on epithelial-to-mesenchymal transition in ccRCC. WLS/GPR177, SDF-1/CXCL12, and CDK4 were sensitive to 5-azacytidine (a DNA demethylation agent), which reverted the inhibition of carcinogenesis caused by AID repression. In summary, AID is an oncogene that might induce tumorigenesis through DNA demethylation. Targeting AID may represent a novel therapeutic approach to treat metastatic ccRCC.


Assuntos
Carcinoma de Células Renais/patologia , Citidina Desaminase/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Fenótipo , Linhagem Celular Tumoral , Movimento Celular/genética , Humanos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética
5.
Cell Death Dis ; 10(4): 251, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874539

RESUMO

Bladder cancer is one of the most common malignant diseases in the urinary system, with poor survival after metastasis. Activation-induced cytidine deaminase (AID), a versatile enzyme involved in antibody diversification, is an oncogenic gene that induces somatic hypermutation and class-switch recombination (CSR). However, the contribution of AID-mediated DNA demethylation to bladder urothelial cell carcinoma (BUCC) remains unclear. Herein, we evaluated the impact on BUCC caused by AID and explored the gene network downstream of AID by using a proteomic approach. Lentiviral vector containing AID-specific shRNA significantly reduced AID expression in T24 and 5637 cells. Silencing AID expression remarkably inhibited tumour malignancies, including cell proliferation, invasion and migration. We used Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics analysis technology to study the underpinning mechanism in monoclonal T24 cells, with or without AID knockdown. Among the 6452 proteins identified, 99 and 142 proteins in shAICDA-T24 cells were significantly up- or downregulated, respectively (1.2-fold change) compared with the NC-T24 control. After a pipeline of bioinformatics analyses, we identified three tumour-associated factors, namely, matrix metallopeptidase 14 (MMP14), C-X-C motif chemokine ligand 12 and wntless Wnt ligand secretion mediator, which were further confirmed in human BUCC tissues. Nonetheless, only MMP14 was sensitive to the DNA demethylation molecule 5-aza-2'-deoxycytidine (5-azadC; 5 µM), which reversed the inhibition of carcinogenesis by AID silence in T24 and 5637 cells. Overall, AID is an oncogene that mediates tumourigenesis via DNA demethylation. Our findings provide novel insights into the clinical treatment for BUCC.


Assuntos
Carcinoma/enzimologia , Citidina Desaminase/metabolismo , Neoplasias da Bexiga Urinária/enzimologia , Animais , Apoptose/genética , Carcinogênese , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/secundário , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Citidina Desaminase/genética , Desmetilação do DNA , Decitabina/farmacologia , Ontologia Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteômica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio
6.
Oncol Lett ; 16(5): 5875-5881, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30344738

RESUMO

The etiology and pathogenesis of bladder cancer (BCa) is complex. MicroRNA (miRNA) has been implicated in BCa. Targeting of signal transducer and activator of transcription 3 (STAT3) by miR-124 to regulate tumorigenesis has been demonstrated in other types of cancer. In the present study, miR-124 levels were downregulated in the BCa T24 cell line and STAT3 was increased in BCa cell lines. Transfection of miR-124 mimics into T24 cells significantly inhibited STAT3 expression. A luciferase assay confirmed that miR-124 directly targeted the STAT3 3'untranslated region to inhibit STAT expression. Knockdown of STAT3 expression led to increased apoptosis of T24 cells and reduced tumor growth in vitro. The results demonstrated the molecular mechanisms and biological functions of the miR-124/STAT3 signal pathway at the cellular level and indicate the potential of miR-124 as a therapeutic target for BCa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA