Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 126(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34650899

RESUMO

In near-Earth space, variations in thermospheric composition have important implications for thermosphere-ionosphere coupling. The ratio of O to N2 is often measured using far-UV airglow observations. Taking such airglow observations from space, looking below the Earth's limb allows for the total column of O and N2 in the ionosphere to be determined. While these observations have enabled many previous studies, determining the impact of non-migrating tides on thermospheric composition has proved difficult, owing to a small contamination of the signal by recombination of ionospheric O+. New ICON observations of far UV are presented here, and their general characteristics are shown. Using these, along with other observations and a global circulation model we show that during the morning hours and at latitudes away from the peak of the equatorial ionospheric anomaly, the impact of non-migrating tides on thermospheric composition can be observed. During March - April 2020, the column O/N2 ratio was seen to vary by 3 - 4 % of the zonal mean. By comparing the amplitude of the variation observed with that in the model, both the utility of these observations and a pathway to enable future studies is shown.

2.
J Geophys Res Space Phys ; 126(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33868889

RESUMO

We compare coincident thermospheric neutral wind observations made by the Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) spacecraft, and four ground-based specular meteor radars (SMRs). Using the green-line MIGHTI channel, we analyze 1158 coincidences between Dec 2019 and May 2020 in the altitude range from 94 to 104 km where the observations overlap. We find that the two datasets are strongly correlated (r = 0.82) with a small mean difference (4.5 m/s). Although this agreement is good, an analysis of known error sources (e.g., shot noise, calibration errors, and analysis assumptions) can only account for about a quarter of the disagreement variance. The unexplained variance is 27.8% of the total signal variance and could be caused by unknown errors. However, based on an analysis of the spatial and caused by temporal variability of the wind on scales ≲70 min. The observed magnitudes agree well during temporal averaging of the two measurement modalities, we suggest that some of the disagreement is likely the night, but during the day, MIGHTI observes 16%-25% faster winds than the SMRs. This remains unresolved but is similar in certain ways to previous SMR-satellite comparisons.

3.
Earth Space Sci ; 7(10): e2020EA001164, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33134433

RESUMO

The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on NASA's Ionospheric Connection Explorer (ICON) mission is designed to measure the neutral wind and temperature between 90 and ∼300 km altitude. Using the Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy technique, observations from MIGHTI can be used to derive thermospheric winds by measuring Doppler shifts of the atomic oxygen red line (630.0 nm) and green line (557.7 nm). Harding et al. (2017, https://doi.org/10.1007/s11214-017-0359-3) (Harding17) describe the wind retrieval algorithm in detail and point out the large uncertainties that result near the solar terminators and equatorial arcs, regions of large spatial gradients in airglow volume emission rates (VER). The uncertainties originate from the assumption of a constant VER at every given altitude, resulting in errors where the assumption is not valid when limb sounders, such as MIGHTI, observe regions with significant VER gradients. In this work, we introduce a new wind retrieval algorithm (Wu20) with the ability to account for VER that is asymmetric along the line of sight with respect to the tangent point. Using the predicted ICON orbit and simulated global VER variation, the greatest impact of the symmetric airglow assumption to the ICON vector wind product is found within 30° from the terminator when the spacecraft is in the dayside, causing an error of at least 10 m/s. The new algorithm developed in this study reduces the error near the terminator by a factor of 10. Although Wu20 improves the accuracy of the retrievals, it loses precision by 75% compared to Harding17.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA