Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335173

RESUMO

The distribution of pharmatically important alkaloids gelsemine, koumine, and gelsenicine in Gelsemium elegans tissues is a hot topic attracting research attention. Regretfully, the in planta visual distribution details of these alkaloids are far from clear although several researches reported the alkaloid quantification in G. elegans by LC-MS/MS. In this study, mass imaging spectrometry (MSI) was employed to visualize the in situ visualization of gelsemine, koumine, and gelsenicine in different organs and tissues of G. elegans at different growth stages, and the relative quantification of three alkaloids were performed according to the image brightness intensities captured by the desorption electrospray ionization MSI (DESI-MSI). The results indicated that these alkaloids were mainly accumulated in pith region and gradually decreased from pith to epidermis. Interestingly, three alkaloids were found to be present in higher abundance in the leaf vein. Along with the growth and development, the accumulation of these alkaloids was gradually increased in root and stem. Moreover, we employed LC-MS/MS to quantify three alkaloids and further validated the in situ distributions. The content of koumine reached 249.2 µg/g in mature roots, 272.0 µg/g in mature leaves, and 149.1 µg/g in mature stems, respectively, which is significantly higher than that of gelsemine and gelsenicine in the same organ. This study provided an accurately in situ visualization of gelsemine, koumine, and gelsenicine in G. elegans, and would be helpful for understanding their accumulation in plant and guiding application.


Assuntos
Alcaloides , Espectrometria de Massas em Tandem , Cromatografia Líquida , Alcaloides Indólicos
2.
Neural Regen Res ; 18(7): 1591-1600, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36571367

RESUMO

Circular RNAs (circRNAs) play a vital role in diabetic peripheral neuropathy. However, their expression and function in Schwann cells in individuals with diabetic peripheral neuropathy remain poorly understood. Here, we performed protein profiling and circRNA sequencing of sural nerves in patients with diabetic peripheral neuropathy and controls. Protein profiling revealed 265 differentially expressed proteins in the diabetic peripheral neuropathy group. Gene Ontology indicated that differentially expressed proteins were mainly enriched in myelination and mitochondrial oxidative phosphorylation. A real-time polymerase chain reaction assay performed to validate the circRNA sequencing results yielded 11 differentially expressed circRNAs. circ_0002538 was markedly downregulated in patients with diabetic peripheral neuropathy. Further in vitro experiments showed that overexpression of circ_0002538 promoted the migration of Schwann cells by upregulating plasmolipin (PLLP) expression. Moreover, overexpression of circ_0002538 in the sciatic nerve in a streptozotocin-induced mouse model of diabetic peripheral neuropathy alleviated demyelination and improved sciatic nerve function. The results of a mechanistic experiment showed that circ_0002538 promotes PLLP expression by sponging miR-138-5p, while a lack of circ_0002538 led to a PLLP deficiency that further suppressed Schwann cell migration. These findings suggest that the circ_0002538/miR-138-5p/PLLP axis can promote the migration of Schwann cells in diabetic peripheral neuropathy patients, improving myelin sheath structure and nerve function. Thus, this axis is a potential target for therapeutic treatment of diabetic peripheral neuropathy.

3.
Front Plant Sci ; 13: 1051756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466241

RESUMO

Gelsemium elegans contains multiple alkaloids with pharmacological effects, thus researchers focus on the identification and application of alkaloids extracted from G. elegans. Regretfully, the spatiotemporal distribution of alkaloids in G. elegans is still unclear. In this study, the desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was applied to simultaneously analyze the distribution of pharmacologically important alkaloids in different organ/tissue sections of G. elegans at different growth stages. Finally, 23 alkaloids were visualized in roots, stems and leaves at seedling stage and 19 alkaloids were observed at mature stage. In mature G. elegans, 16 alkaloids were distributed in vascular bundle region of mature roots, 15 alkaloids were mainly located in the pith region of mature stems and 2 alkaloids were enriched in epidermis region of mature stems. A total of 16 alkaloids were detected in leaf veins of mature leaves and 17 alkaloids were detected in shoots. Interestingly, diffusion and transfer of multiple alkaloids in tissues have been observed along with the development and maturation. This study comprehensively characterized the spatial metabolomics of G. elegans alkaloids, and the spatiotemporal distribution of alkaloid synthesis. In addition, the results also have reference value for the development and application of Gelsemium elegans and other medicinal plants.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36142021

RESUMO

Dam removal is considered an effective measure to solve the adverse ecological effects caused by dam construction and has started to be considered in China. The sediment migration and habitat restoration of river ecosystems after dam removal have been extensively studied abroad but are still in the exploratory stage in China. However, there are few studies on the ecological response of fishes at different growth stages. Considering the different habitat preferences of Schizothorax prenanti (S. prenanti) in the spawning and juvenile periods, this study coupled field survey data and a two-dimensional hydrodynamic model to explore the changes in river morphology at different scales and the impact of changes in hydrodynamic conditions on fish habitat suitability in the short term. The results show that after the dam is removed, in the upstream of the dam, the riverbed is eroded and cut down and the riverbed material coarsens. With the increase in flow velocity and the decrease in flow area, the weighted usable area (WUA) in the spawning and juvenile periods decreases by 5.52% and 16.36%, respectively. In the downstream of the dam, the riverbed is markedly silted and the bottom material becomes fine. With the increase in water depth and flow velocity, the WUA increases by 79.91% in the spawning period and decreases by 67.90% in the juvenile period, which is conducive to adult fish spawning but not to juvenile fish growth. The changes in physical habitat structure over a short time period caused by dam removal have different effects on different fish development periods, which are not all positive. The restoration of stream continuity increases adult fish spawning potential while limiting juvenile growth. Thus, although fish can spawn successfully, self-recruitment of fish stocks can still be affected if juvenile fish do not grow successfully. This study provides a research basis for habitat assessment after dam removal and a new perspective for the subsequent adaptive management strategy of the project.


Assuntos
Cyprinidae , Ecossistema , Animais , Cyprinidae/fisiologia , Peixes/fisiologia , Hidrodinâmica , Rios , Água
5.
J Exp Med ; 215(12): 3019-3037, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30455267

RESUMO

Toll-like receptors (TLRs) are nucleic acid-sensing receptors and have been implicated in mediating pain and itch. Here we report that Tlr8 -/- mice show normal itch behaviors, but have defects in neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased TLR8 expression in small-diameter IB4+ DRG neurons. Inhibition of TLR8 in the DRG attenuated SNL-induced pain hypersensitivity. Conversely, intrathecal or intradermal injection of TLR8 agonist, VTX-2337, induced TLR8-dependent pain hypersensitivity. Mechanistically, TLR8, localizing in the endosomes and lysosomes, mediated ERK activation, inflammatory mediators' production, and neuronal hyperexcitability after SNL. Notably, miR-21 was increased in DRG neurons after SNL. Intrathecal injection of miR-21 showed the similar effects as VTX-2337 and inhibition of miR-21 in the DRG attenuated neuropathic pain. The present study reveals a previously unknown role of TLR8 in the maintenance of neuropathic pain, suggesting that miR-21-TLR8 signaling may be potential new targets for drug development against this type of chronic pain.


Assuntos
Dor Crônica/imunologia , Gânglios Espinais/imunologia , MicroRNAs/imunologia , Neuralgia/imunologia , Transdução de Sinais/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/genética , Dor Crônica/patologia , Endossomos/imunologia , Endossomos/patologia , Gânglios Espinais/patologia , Lisossomos/imunologia , Lisossomos/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , MicroRNAs/genética , Neuralgia/tratamento farmacológico , Neuralgia/genética , Neuralgia/patologia , Neurônios/imunologia , Neurônios/patologia , Transdução de Sinais/genética , Receptor 8 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA