Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(7): e37, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34928390

RESUMO

Proteins encoded by newly-emerged genes ('orphan genes') share no sequence similarity with proteins in any other species. They provide organisms with a reservoir of genetic elements to quickly respond to changing selection pressures. Here, we systematically assess the ability of five gene prediction pipelines to accurately predict genes in genomes according to phylostratal origin. BRAKER and MAKER are existing, popular ab initio tools that infer gene structures by machine learning. Direct Inference is an evidence-based pipeline we developed to predict gene structures from alignments of RNA-Seq data. The BIND pipeline integrates ab initio predictions of BRAKER and Direct inference; MIND combines Direct Inference and MAKER predictions. We use highly-curated Arabidopsis and yeast annotations as gold-standard benchmarks, and cross-validate in rice. Each pipeline under-predicts orphan genes (as few as 11 percent, under one prediction scenario). Increasing RNA-Seq diversity greatly improves prediction efficacy. The combined methods (BIND and MIND) yield best predictions overall, BIND identifying 68% of annotated orphan genes, 99% of ancient genes, and give the highest sensitivity score regardless dataset in Arabidopsis. We provide a light weight, flexible, reproducible, and well-documented solution to improve gene prediction.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Genoma , Oryza/genética , RNA-Seq , Software
2.
Bioinformatics ; 37(18): 3019-3020, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576786

RESUMO

SUMMARY: Searching for open reading frames is a routine task and a critical step prior to annotating protein coding regions in newly sequenced genomes or de novo transcriptome assemblies. With the tremendous increase in genomic and transcriptomic data, faster tools are needed to handle large input datasets. These tools should be versatile enough to fine-tune search criteria and allow efficient downstream analysis. Here we present a new python based tool, orfipy, which allows the user to flexibly search for open reading frames in genomic and transcriptomic sequences. The search is rapid and is fully customizable, with a choice of FASTA and BED output formats. AVAILABILITY AND IMPLEMENTATION: orfipy is implemented in python and is compatible with python v3.6 and higher. Source code: https://github.com/urmi-21/orfipy. Installation: from the source, or via PyPi (https://pypi.org/project/orfipy) or bioconda (https://anaconda.org/bioconda/orfipy). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Fases de Leitura Aberta , Genoma , Transcriptoma
3.
Nucleic Acids Res ; 48(4): e23, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31956905

RESUMO

The diverse and growing omics data in public domains provide researchers with tremendous opportunity to extract hidden, yet undiscovered, knowledge. However, the vast majority of archived data remain unused. Here, we present MetaOmGraph (MOG), a free, open-source, standalone software for exploratory analysis of massive datasets. Researchers, without coding, can interactively visualize and evaluate data in the context of its metadata, honing-in on groups of samples or genes based on attributes such as expression values, statistical associations, metadata terms and ontology annotations. Interaction with data is easy via interactive visualizations such as line charts, box plots, scatter plots, histograms and volcano plots. Statistical analyses include co-expression analysis, differential expression analysis and differential correlation analysis, with significance tests. Researchers can send data subsets to R for additional analyses. Multithreading and indexing enable efficient big data analysis. A researcher can create new MOG projects from any numerical data; or explore an existing MOG project. MOG projects, with history of explorations, can be saved and shared. We illustrate MOG by case studies of large curated datasets from human cancer RNA-Seq, where we identify novel putative biomarker genes in different tumors, and microarray and metabolomics data from Arabidopsis thaliana. MOG executable and code: http://metnetweb.gdcb.iastate.edu/ and https://github.com/urmi-21/MetaOmGraph/.


Assuntos
Big Data , Perfilação da Expressão Gênica/estatística & dados numéricos , Regulação da Expressão Gênica/genética , Software , Análise de Dados , Interpretação Estatística de Dados , Humanos , Metadados/estatística & dados numéricos
4.
Bioinformatics ; 35(19): 3617-3627, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30873536

RESUMO

MOTIVATION: The goal of phylostratigraphy is to infer the evolutionary origin of each gene in an organism. This is done by searching for homologs within increasingly broad clades. The deepest clade that contains a homolog of the protein(s) encoded by a gene is that gene's phylostratum. RESULTS: We have created a general R-based framework, phylostratr, to estimate the phylostratum of every gene in a species. The program fully automates analysis: selecting species for balanced representation, retrieving sequences, building databases, inferring phylostrata and returning diagnostics. Key diagnostics include: detection of genes with inferred homologs in old clades, but not intermediate ones; proteome quality assessments; false-positive diagnostics, and checks for missing organellar genomes. phylostratr allows extensive customization and systematic comparisons of the influence of analysis parameters or genomes on phylostrata inference. A user may: modify the automatically generated clade tree or use their own tree; provide custom sequences in place of those automatically retrieved from UniProt; replace BLAST with an alternative algorithm; or tailor the method and sensitivity of the homology inference classifier. We show the utility of phylostratr through case studies in Arabidopsis thaliana and Saccharomyces cerevisiae. AVAILABILITY AND IMPLEMENTATION: Source code available at https://github.com/arendsee/phylostratr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Filogenia , Software , Genoma , Saccharomyces cerevisiae
5.
BMC Bioinformatics ; 20(1): 440, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455236

RESUMO

BACKGROUND: With every new genome that is sequenced, thousands of species-specific genes (orphans) are found, some originating from ultra-rapid mutations of existing genes, many others originating de novo from non-genic regions of the genome. If some of these genes survive across speciations, then extant organisms will contain a patchwork of genes whose ancestors first appeared at different times. Standard phylostratigraphy, the technique of partitioning genes by their age, is based solely on protein similarity algorithms. However, this approach relies on negative evidence ─ a failure to detect a homolog of a query gene. An alternative approach is to limit the search for homologs to syntenic regions. Then, genes can be positively identified as de novo orphans by tracing them to non-coding sequences in related species. RESULTS: We have developed a synteny-based pipeline in the R framework. Fagin determines the genomic context of each query gene in a focal species compared to homologous sequence in target species. We tested the fagin pipeline on two focal species, Arabidopsis thaliana (plus four target species in Brassicaseae) and Saccharomyces cerevisiae (plus six target species in Saccharomyces). Using microsynteny maps, fagin classified the homology relationship of each query gene against each target genome into three main classes, and further subclasses: AAic (has a coding syntenic homolog), NTic (has a non-coding syntenic homolog), and Unknown (has no detected syntenic homolog). fagin inferred over half the "Unknown" A. thaliana query genes, and about 20% for S. cerevisiae, as lacking a syntenic homolog because of local indels or scrambled synteny. CONCLUSIONS: fagin augments standard phylostratigraphy, and extends synteny-based phylostratigraphy with an automated, customizable, and detailed contextual analysis. By comparing synteny-based phylostrata to standard phylostrata, fagin systematically identifies those orphans and lineage-specific genes that are well-supported to have originated de novo. Analyzing within-species genomes should distinguish orphan genes that may have originated through rapid divergence from de novo orphans. Fagin also delineates whether a gene has no syntenic homolog because of technical or biological reasons. These analyses indicate that some orphans may be associated with regions of high genomic perturbation.


Assuntos
Arabidopsis/genética , Genes , Filogenia , Saccharomyces cerevisiae/genética , Software , Sintenia/genética , Sequência de Bases , Genoma , Homologia de Sequência
6.
Plant Mol Biol ; 96(4-5): 509-529, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29502299

RESUMO

KEY MESSAGE: This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.


Assuntos
Arabidopsis/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma/genética , Hidrolases/metabolismo , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
7.
Nature ; 485(7399): 530-3, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22622584

RESUMO

Specialized metabolic enzymes biosynthesize chemicals of ecological importance, often sharing a pedigree with primary metabolic enzymes. However, the lineage of the enzyme chalcone isomerase (CHI) remained unknown. In vascular plants, CHI-catalysed conversion of chalcones to chiral (S)-flavanones is a committed step in the production of plant flavonoids, compounds that contribute to attraction, defence and development. CHI operates near the diffusion limit with stereospecific control. Although associated primarily with plants, the CHI fold occurs in several other eukaryotic lineages and in some bacteria. Here we report crystal structures, ligand-binding properties and in vivo functional characterization of a non-catalytic CHI-fold family from plants. Arabidopsis thaliana contains five actively transcribed genes encoding CHI-fold proteins, three of which additionally encode amino-terminal chloroplast-transit sequences. These three CHI-fold proteins localize to plastids, the site of de novo fatty-acid biosynthesis in plant cells. Furthermore, their expression profiles correlate with those of core fatty-acid biosynthetic enzymes, with maximal expression occurring in seeds and coinciding with increased fatty-acid storage in the developing embryo. In vitro, these proteins are fatty-acid-binding proteins (FAPs). FAP knockout A. thaliana plants show elevated α-linolenic acid levels and marked reproductive defects, including aberrant seed formation. Notably, the FAP discovery defines the adaptive evolution of a stereospecific and catalytically 'perfected' enzyme from a non-enzymatic ancestor over a defined period of plant evolution.


Assuntos
Arabidopsis/química , Biocatálise , Evolução Molecular , Ácidos Graxos/metabolismo , Liases Intramoleculares/química , Liases Intramoleculares/metabolismo , Dobramento de Proteína , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/deficiência , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Liases Intramoleculares/deficiência , Liases Intramoleculares/genética , Ligantes , Modelos Moleculares , Fenótipo , Ligação Proteica , Estereoisomerismo , Ácido alfa-Linolênico/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(47): 14734-9, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26554020

RESUMO

The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Genes de Plantas , Nitrogênio/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação , Oryza/genética , Fenótipo , Fotossíntese , Filogenia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Estrutura Terciária de Proteína , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Especificidade da Espécie
9.
Int J Mol Sci ; 18(5)2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28468331

RESUMO

Rubber elongation factor (REF) and small rubber particle protein (SRPP) are two key factors for natural rubber biosynthesis. To further understand the roles of these proteins in rubber formation, six different genes for latex abundant REF or SRPP proteins, including REF138,175,258 and SRPP117,204,243, were characterized from Hevea brasiliensis Reyan (RY) 7-33-97. Sequence analysis showed that REFs have a variable and long N-terminal, whereas SRPPs have a variable and long C-terminal beyond the REF domain, and REF258 has a ß subunit of ATPase in its N-terminal. Through two-dimensional electrophoresis (2-DE), each REF/SRPP protein was separated into multiple protein spots on 2-DE gels, indicating they have multiple protein species. The abundance of REF/SRPP proteins was compared between ethylene and control treatments or among rubber tree clones with different levels of latex productivity by analyzing 2-DE gels. The total abundance of each REF/SRPP protein decreased or changed a little upon ethylene stimulation, whereas the abundance of multiple protein species of the same REF/SRPP changed diversely. Among the three rubber tree clones, the abundance of the protein species also differed significantly. Especially, two protein species of REF175 or REF258 were ethylene-responsive only in the high latex productivity clone RY 8-79 instead of in RY 7-33-97 and PR 107. Some individual protein species were positively related to ethylene stimulation and latex productivity. These results suggested that the specific protein species could be more important than others for rubber production and post-translational modifications might play important roles in rubber biosynthesis.


Assuntos
Etilenos/farmacologia , Hevea/efeitos dos fármacos , Látex/biossíntese , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Hevea/metabolismo , Proteínas de Plantas/genética , Proteoma/genética
10.
Infect Immun ; 83(9): 3545-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099584

RESUMO

Avian pathogenic Escherichia coli (APEC) strains cause one of the three most significant infectious diseases in the poultry industry and are also potential food-borne pathogens threating human health. In this study, we showed that ArcA (aerobic respiratory control), a global regulator important for E. coli's adaptation from anaerobic to aerobic conditions and control of that bacterium's enzymatic defenses against reactive oxygen species (ROS), is involved in the virulence of APEC. Deletion of arcA significantly attenuates the virulence of APEC in the duck model. Transcriptome sequencing (RNA-Seq) analyses comparing the APEC wild type and the arcA mutant indicate that ArcA regulates the expression of 129 genes, including genes involved in citrate transport and metabolism, flagellum synthesis, and chemotaxis. Further investigations revealed that citCEFXG contributed to APEC's microaerobic growth at the lag and log phases when cultured in duck serum and that ArcA played a dual role in the control of citrate metabolism and transportation. In addition, deletion of flagellar genes motA and motB and chemotaxis gene cheA significantly attenuated the virulence of APEC, and ArcA was shown to directly regulate the expression of motA, motB, and cheA. The combined results indicate that ArcA controls metabolism, chemotaxis, and motility contributing to the pathogenicity of APEC.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Quimiotaxia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas Repressoras/genética , Animais , Patos , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
BMC Genomics ; 16 Suppl 3: S9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25708381

RESUMO

BACKGROUND: The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks. RESULTS: With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks. CONCLUSIONS: This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR.


Assuntos
Glycine max/metabolismo , Metabolômica , Sementes/crescimento & desenvolvimento , Software , Biologia de Sistemas , Transcriptoma , Redes Reguladoras de Genes , Redes e Vias Metabólicas , Metabolômica/estatística & dados numéricos , Sementes/química , Sementes/embriologia , Glycine max/química , Glycine max/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Plant Biotechnol J ; 13(2): 177-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25146936

RESUMO

The genome of each species contains as high as 8% of genes that are uniquely present in that species. Little is known about the functional significance of these so-called species specific or orphan genes. The Arabidopsis thaliana gene Qua-Quine Starch (QQS) is species specific. Here, we show that altering QQS expression in Arabidopsis affects carbon partitioning to both starch and protein. We hypothesized QQS may be conserved in a feature other than primary sequence, and as such could function to impact composition in another species. To test the potential of QQS in affecting composition in an ectopic species, we introduced QQS into soybean. Soybean T1 lines expressing QQS have up to 80% decreased leaf starch and up to 60% increased leaf protein; T4 generation seeds from field-grown plants contain up to 13% less oil, while protein is increased by up to 18%. These data broaden the concept of QQS as a modulator of carbon and nitrogen allocation, and demonstrate that this species-specific gene can affect the seed composition of an agronomic species thought to have diverged from Arabidopsis 100 million years ago.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Carbono/metabolismo , Genes de Plantas , Glycine max/genética , Nitrogênio/metabolismo , Proteínas de Arabidopsis/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Sementes/metabolismo , Amido/metabolismo
13.
Plant Physiol ; 165(3): 948-961, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24828308

RESUMO

Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/.

14.
J Biol Chem ; 288(5): 3163-73, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23243312

RESUMO

Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.


Assuntos
Alquil e Aril Transferases/metabolismo , Biocatálise , Vias Biossintéticas , Sesquiterpenos/metabolismo , Valeriana/enzimologia , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidrocarbonetos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesquiterpenos/química , Especificidade por Substrato , Valeriana/genética
15.
Eur J Hum Genet ; 32(1): 10-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37938797

RESUMO

COVID-19, the disease caused by SARS-CoV-2, has caused significant morbidity and mortality worldwide. The betacoronavirus continues to evolve with global health implications as we race to learn more to curb its transmission, evolution, and sequelae. The focus of this review, the second of a three-part series, is on the biological effects of the SARS-CoV-2 virus on post-acute disease in the context of tissue and organ adaptations and damage. We highlight the current knowledge and describe how virological, animal, and clinical studies have shed light on the mechanisms driving the varied clinical diagnoses and observations of COVID-19 patients. Moreover, we describe how investigations into SARS-CoV-2 effects have informed the understanding of viral pathogenesis and provide innovative pathways for future research on the mechanisms of viral diseases.


Assuntos
COVID-19 , Animais , Humanos , SARS-CoV-2
16.
Nat Commun ; 15(1): 4825, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862542

RESUMO

Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.


Assuntos
Astronautas , Radiação Cósmica , MicroRNAs , Voo Espacial , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Radiação Cósmica/efeitos adversos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Masculino , Mitocôndrias/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Feminino , Adulto
17.
BMC Bioinformatics ; 14: 234, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23883165

RESUMO

BACKGROUND: We describe a method for extracting data about how biomolecule pairs interact from texts. This method relies on empirically determined characteristics of sentences. The characteristics are efficient to compute, making this approach to extraction of biomolecular interactions scalable. The results of such interaction mining can support interaction network annotation, question answering, database construction, and other applications. RESULTS: We constructed a software system to search MEDLINE for sentences likely to describe interactions between given biomolecules. The system extracts a list of the interaction-indicating terms appearing in those sentences, then ranks those terms based on their likelihood of correctly characterizing how the biomolecules interact. The ranking process uses a tf-idf (term frequency-inverse document frequency) based technique using empirically derived knowledge about sentences, and was applied to the MEDLINE literature collection. Software was developed as part of the MetNet toolkit (http://www.metnetdb.org). CONCLUSIONS: Specific, efficiently computable characteristics of sentences about biomolecular interactions were analyzed to better understand how to use these characteristics to extract how biomolecules interact.The text empirics method that was investigated, though arising from a classical tradition, has yet to be fully explored for the task of extracting biomolecular interactions from the literature. The conclusions we reach about the sentence characteristics investigated in this work, as well as the technique itself, could be used by other systems to provide evidence about putative interactions, thus supporting efforts to maximize the ability of hybrid systems to support such tasks as annotating and constructing interaction networks.


Assuntos
Mineração de Dados/métodos , MEDLINE , Software , Algoritmos , Bases de Dados Factuais
18.
BMC Bioinformatics ; 14: 214, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23822712

RESUMO

BACKGROUND: The synthesis of information across microarray studies has been performed by combining statistical results of individual studies (as in a mosaic), or by combining data from multiple studies into a large pool to be analyzed as a single data set (as in a melting pot of data). Specific issues relating to data heterogeneity across microarray studies, such as differences within and between labs or differences among experimental conditions, could lead to equivocal results in a melting pot approach. RESULTS: We applied statistical theory to determine the specific effect of different means and heteroskedasticity across 19 groups of microarray data on the sign and magnitude of gene-to-gene Pearson correlation coefficients obtained from the pool of 19 groups. We quantified the biases of the pooled coefficients and compared them to the biases of correlations estimated by an effect-size model. Mean differences across the 19 groups were the main factor determining the magnitude and sign of the pooled coefficients, which showed largest values of bias as they approached ±1. Only heteroskedasticity across the pool of 19 groups resulted in less efficient estimations of correlations than did a classical meta-analysis approach of combining correlation coefficients. These results were corroborated by simulation studies involving either mean differences or heteroskedasticity across a pool of N > 2 groups. CONCLUSIONS: The combination of statistical results is best suited for synthesizing the correlation between expression profiles of a gene pair across several microarray studies.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Simulação por Computador , Feminino , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Genética Populacional/métodos , Humanos , Masculino , Metanálise como Assunto , Modelos Teóricos , Projetos de Pesquisa
19.
Nat Prod Rep ; 30(4): 565-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23447050

RESUMO

Discovering molecular components and their functionality is key to the development of hypotheses concerning the organization and regulation of metabolic networks. The iterative experimental testing of such hypotheses is the trajectory that can ultimately enable accurate computational modelling and prediction of metabolic outcomes. This information can be particularly important for understanding the biology of natural products, whose metabolism itself is often only poorly defined. Here, we describe factors that must be in place to optimize the use of metabolomics in predictive biology. A key to achieving this vision is a collection of accurate time-resolved and spatially defined metabolite abundance data and associated metadata. One formidable challenge associated with metabolite profiling is the complexity and analytical limits associated with comprehensively determining the metabolome of an organism. Further, for metabolomics data to be efficiently used by the research community, it must be curated in publicly available metabolomics databases. Such databases require clear, consistent formats, easy access to data and metadata, data download, and accessible computational tools to integrate genome system-scale datasets. Although transcriptomics and proteomics integrate the linear predictive power of the genome, the metabolome represents the nonlinear, final biochemical products of the genome, which results from the intricate system(s) that regulate genome expression. For example, the relationship of metabolomics data to the metabolic network is confounded by redundant connections between metabolites and gene-products. However, connections among metabolites are predictable through the rules of chemistry. Therefore, enhancing the ability to integrate the metabolome with anchor-points in the transcriptome and proteome will enhance the predictive power of genomics data. We detail a public database repository for metabolomics, tools and approaches for statistical analysis of metabolomics data, and methods for integrating these datasets with transcriptomic data to create hypotheses concerning specialized metabolisms that generate the diversity in natural product chemistry. We discuss the importance of close collaborations among biologists, chemists, computer scientists and statisticians throughout the development of such integrated metabolism-centric databases and software.


Assuntos
Produtos Biológicos , Metabolômica , Plantas Medicinais/química , Arabidopsis/genética , Arabidopsis/metabolismo , Bases de Dados Factuais , Descoberta de Drogas , Plantas Medicinais/genética
20.
Physiol Plant ; 148(3): 354-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23600727

RESUMO

Species of the genus Hypericum contain a rich array of unusual polyketides, however, only a small proportion of the over 450 Hypericum species, other than the popular medicinal supplement St. John's Wort (Hypericum perforatum), have even been chemically characterized. Hypericum gentianoides, a small annual used medicinally by Cherokee Americans, contains bioactive acylphloroglucinols. Here, we identify acylphloroglucinol constituents of H. gentianoides and determine a potential pathway to their synthesis. Liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) and HPLC-UV indicate that the level of accumulation and profile of acylphloroglucinols in H. gentianoides vary little seasonally when grown in a greenhouse, but do vary with development and are highly dependent on the accession, highlighting the importance of the selection of plant material for study. We identify the chemical structures of the nine prevalent polyketides, based on LC/ESI-MS and hybrid quadrupole orthogonal time-of-flight (Q-TOF) mass spectrometry; these metabolites include one monomeric phlorisobutyrophenone (PIB) derivative and eight dimeric acylphloroglucinols. Q-TOF spectrometry was used to identify eight additional PIB derivatives that were not detected by LC/ESI-MS. These data lead us to propose that diacylphloroglucinols are synthesized via modification of PIB to yield diverse phloroglucinol and filicinic acids moieties, followed by dimerization of a phloroglucinol and a filicinic acid monomer to yield the observed complement of diacylphloroglucinols. The metabolomics data from H. gentianoides are accessible in plant metabolomics resource (PMR) (http://www.metnetdb.org/pmr), a public metabolomics database with analysis software for plants and microbial organisms.


Assuntos
Hypericum/metabolismo , Floroglucinol/metabolismo , Vias Biossintéticas , Cromatografia Líquida , Ecótipo , Hypericum/crescimento & desenvolvimento , Íons , Floroglucinol/química , Floroglucinol/isolamento & purificação , Extratos Vegetais/metabolismo , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA