Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513203

RESUMO

In the present study, poly(butylene succinate) (PBSu) and its bionanocomposites containing 1, 2.5, and 5 wt.% biochar (MSP700) were prepared via in situ melt polycondensation in order to investigate the thermal stability and decomposition mechanism of the materials. X-ray photoelectron spectroscopy (XPS) measurements were carried out to analyze the surface area of a biochar sample and PBSu/biochar nanocomposites. From XPS, it was found that only physical interactions were taking place between PBSu matrix and biochar nanoadditive. Thermal stability, decomposition kinetics, and the decomposition mechanism of the pristine PBSu and PBSu/biochar nanocomposites were thoroughly studied by thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). TGA thermograms depicted that all materials had high thermal stability, since their decomposition started at around 300 °C. However, results indicated a slight reduction in the thermal stability of the PBSu biochar nanocomposites because of the potential catalytic impact of biochar. Py-GC/MS analysis was employed to examine, in more detail, the thermal degradation mechanism of PBSu nanocomposites filled with biochar. From the decomposition products identified by Py-GC/MS after pyrolysis at 450 °C, it was found that the decomposition pathway of the PBSu/biochar nanocomposites took place mainly via ß-hydrogen bond scission, which is similar to that which took place for neat PBSu. However, at higher biochar content (5 wt.%), some localized differences in the intensity of the peaks of some specific thermal degradation products could be recognized, indicating that α-hydrogen bond scission was also taking place. A study of the thermal stability and decomposition pathway of PBSu/biochar bionanocomposites is crucial to examine if the new materials fulfill the requirements for further investigation for mulch films in agriculture or in electronics as possible applications.

2.
J Environ Manage ; 314: 115035, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436706

RESUMO

Pyrolysis converts nutrient-rich residues (e.g., sewage sludge and manures) into biochar with low levels of organic contaminants and high nutrient contents. However, the availability of phosphorus (P) as one of the key nutrients in such biochar tends to be low and new approaches are needed to enhance P-availability. In this work we tested and optimised one such method, doping biomass prior to pyrolysis with potassium (K) as potassium acetate. The treatment worked effectively in both pyrolysis units tested (microscale and lab-scale, continuous unit) and all three feedstocks (two types of sewage sludges and swine manure). The most dramatic effect was observed in the microscale pyrolysis unit at 400 °C where 5% K doping increased the water-extractable P content 700-fold to 43% of total P. Of the added K, on average 90% was retained in biochar after pyrolysis of which ∼50% was water-extractable. The proposed method enables conversion of low-value residues into valuable resources with agronomically relevant total and available P and K levels. This approach does not require specialised equipment or process modifications and is therefore easy to implement and relatively cheap (∼US$ 60-80 t-1 treated feedstock). It can present an urgently required solution to fulfil regulatory requirements for P-recovery.


Assuntos
Esterco , Esgotos , Animais , Carvão Vegetal/química , Fósforo , Acetato de Potássio , Esgotos/química , Suínos , Água/química
3.
Environ Pollut ; 316(Pt 1): 120532, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323358

RESUMO

Adsorption using carbon materials is one of the most efficient techniques for removal of emerging contaminants such as pharmaceuticals from wastewater. However, high costs are a major hurdle for their large-scale application in areas currently under economic constraints. While most research focuses on decreasing the adsorbent price by increasing its capacity, treatment costs for exhausted adsorbents and their respective end-of-life scenarios are often neglected. Here, we assessed a novel technique for recycling of exhausted activated biochars based on hydrothermal treatment at temperatures of 160-320 °C. While a treatment temperature of 280 °C was sufficient to fully degrade all 10 evaluated pharmaceuticals in solution, when adsorbed on activated biochars certain compounds were shielded and could not be fully decomposed even at the highest treatment temperature tested. However, the use of engineered biochar doped with Fe-species successfully increased the treatment efficiency, resulting in full degradation of all 10 parent compounds at 320 °C. The proposed recycling technique showed a high carbon retention in biochar with only minor losses, making the treatment a viable candidate for environmentally sound recycling of biochars. Recycled biochars displayed potentially beneficial structural changes ranging from an increased mesoporosity to additional oxygen bearing functional groups, providing synergies for subsequent applications as part of a sequential biochar system.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Carbono/química , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Adsorção , Preparações Farmacêuticas
4.
Polymers (Basel) ; 15(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850331

RESUMO

Biodegradable polymers offer a promising alternative to the global plastic problems and especially in the last decade, to the microplastics problems. For the first time, samples of poly(butylene succinate) (PBSu) biocomposites containing 1, 2.5, and 5 wt% biochar (BC) were prepared by in situ polymerization via the two-stage melt polycondensation procedure. BC was used as a filler for the PBSu to improve its mechanical properties, thermal transitions, and biodegradability. The structure of the synthesized polymers was examined by 1H and 13C nuclear magnetic resonance (NMR) and X-Ray diffraction (XRD) along with an estimation of the molecular weights, while differential scanning calorimetry (DSC) and light flash analysis (LFA) were also employed to record the thermal transitions and evaluate the thermal conductivity, respectively. It was found that the amount of BC does not affect the molecular weight of PBSu biocomposites. The fine dispersion of BC, as well as the increase in BC content in the polymeric matrix, significantly improves the tensile and impact strengths. The DSC analysis results showed that BC facilitates the crystallization of PBSu biocomposites. Due to the latter, a mild and systematic increase in thermal diffusivity and conductivity was recorded indicating that BC is a conductive material. The molecular mobility of PBSu, local and segmental, does not change significantly in the biocomposites, whereas the BC seems to cause an increase in the overall dielectric permittivity. Finally, it was found that the enzymatic hydrolysis degradation rate of biocomposites increased with the increasing BC content.

5.
Polymers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559852

RESUMO

Low-density polyethylene (LDPE) based packaging films mostly end up in landfill after single-use as they are not commonly recycled due to their flexible nature, low strength and low cost. Additionally, the necessity to separate and sort different plastic waste streams is the most costly step in plastics recycling, and is a major barrier to increasing recycling rates. This cost can be reduced through using waste mixed plastics (wMP) as a raw material. This research investigates the properties of PE-based wMP coming from film packaging wastes that constitutes different grades of PE with traces of polypropylene (PP). Their properties are compared with segregated individual recycled polyolefins and virgin LDPE. The plastic plaques are produced directly from the wMP shreds as well as after extruding the wMP shreds into a more uniform material. The effect of different material forms and processing conditions on the mechanical properties are investigated. The results of the investigation show that measured properties of the wMP fall well within the range of properties of various grades of virgin polyethylene, indicating the maximum possible variations between different batches. Addition of an intermediate processing step of extrusion before compression moulding is found to have no effect on the tensile properties but results in a noticeably different failure behaviour. The wMP does not show any thermal degradation during processing that was confirmed by thermogravimetric analysis. The results give a scientific insight into the adoption of wMP in real world products that can divert them from landfill creating a more circular economy.

6.
Bioresour Technol ; 321: 124473, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33302011

RESUMO

Magnetic carbons can significantly lower the costs of wastewater treatment due to easy separation of the adsorbent. However, current production techniques often involve the use of chlorinated or sulfonated Fe precursors with an inherent potential for secondary pollution. In this study, ochre, an iron-rich waste stream was investigated as a sustainable Fe source to produce magnetic activated biochar from two agricultural feedstocks, softwood and wheat straw. Fe doping resulted in significant shifts in pyrolysis yield distribution with increased gas yields (+50%) and gas energy content (+40%) lowering the energy costs for production. Physical activation transformed ochre to magnetite/maghemite resulting in activated magnetic biochars and led to a 4-fold increase in the adsorption capacities for two common micropollutants - caffeine and fluconazole. The results show that Fe doping not only benefits the adsorbent properties but also the production process, leading the way to sustainable carbon adsorbents.


Assuntos
Ferro , Pirólise , Adsorção , Carvão Vegetal , Fenômenos Magnéticos
7.
Bioresour Technol ; 340: 125561, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34332442

RESUMO

Adsorption of six contaminants of emerging concern (CECs) - caffeine, chloramphenicol, carbamazepine, bisphenol A, diclofenac, and triclosan - from a multicomponent solution was studied using activated biochars obtained from three lignocellulosic feedstocks: wheat straw, softwood, and peach stones. Structural parameters related to the porosity and ash content of activated biochar and the hydrophobic properties of the CECs were found to influence the adsorption efficiency. For straw and softwood biochar, activation resulted in a more developed mesoporosity, whereas activation of peach stone biochar increased only the microporosity. The most hydrophilic CECs studied, caffeine and chloramphenicol, displayed the highest adsorption (22.8 and 11.3 mg g-1) onto activated wheat straw biochar which had the highest ash content of the studied adsorbents (20 wt%). Adsorption of bisphenol A and triclosan, both relatively hydrophobic substances, was highest (31.6 and 30.2 mg g-1) onto activated biochar from softwood, which displayed a well-developed mesoporosity and low ash content.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Adsorção , Lignina
8.
Sci Total Environ ; 796: 148977, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273833

RESUMO

Cost-effective, efficient, and sustainable water treatment solutions utilising existing materials and technology will make it easier for low and middle-income countries to adopt them, improving public health. The ability of biochar to mediate and support microbial degradation of contaminants, combined with its carbon-sequestration potential, has attracted attention in recent years. Biochar is a possible candidate for use in cost-effective and sustainable biological water treatment, especially in agrarian economies with easy access to abundant biomass in the form of crop residues and organic wastes. This review evaluates the scope, potential benefits (economic and environmental) and challenges of sustainable biological water treatment using 'Biologically-Enhanced Biochar' or BEB. We discuss the various processes occurring in BEB systems and demonstrate the urgent need to investigate microbial degradation mechanisms. We highlight the need to correlate biochar properties to biofilm development, which can eventually determine process efficiency. We also demonstrate the various opportunities in adopting BEB as a cheaper and more viable alternative in Low and Middle Income Countries and compare it to the current benchmark, 'Biological Activated Carbon'. We focus on the recent advances in the areas of data science, mathematical modelling and molecular biology to systematically and sustainably design BEB filters, unlike the largely empirical design approaches seen in water treatment. 'Sequential biochar systems' are introduced as specially designed end-of-life techniques to lower the environmental impact of BEB filters and examples of their integration into biological water treatment that can fulfil zero waste criteria for BEBs are given.


Assuntos
Carvão Vegetal , Purificação da Água , Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA