Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Int Adv Otol ; 18(3): 219-224, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35608490

RESUMO

BACKGROUND: Cochlear implantation requires excellent surgical skills; virtual reality simulation training is an effective method for acquiring basic competency in temporal bone surgery before progression to cadaver dissection. However, cochlear implantation virtual reality simulation training remains largely unexplored and only one simulator currently supports the training of the cochlear implantation electrode insertion. Here, we aim to evaluate the effect of cochlear implantation virtual reality simulation training on subsequent cadaver dissection performance and self-directedness. METHODS: This was a randomized, controlled trial. Eighteen otolaryngology residents were randomized to either mastoidectomy including cochlear implantation virtual reality simulation training (intervention) or mastoidectomy virtual reality simulation training alone (controls) before cadaver cochlear implantation surgery. Surgical performance was evaluated by two blinded expert raters using a validated, structured assess- ment tool. The need for supervision (reflecting self-directedness) was assessed via post-dissection questionnaires. RESULTS: The intervention group achieved a mean score of 22.9 points of a maximum of 44 points, which was 5.4% higher than the control group's 21.8 points (P = .51). On average, the intervention group required assistance 1.3 times during cadaver drilling; this was 41% more frequent in the control group who received assistance 1.9 times (P = .21). CONCLUSION: Cochlear implantation virtual reality simulation training is feasible in the context of a cadaver dissection course. The addition of cochlear implantation virtual reality training to basic mastoidectomy virtual reality simulation training did not lead to a significant improvement of performance or self-directedness in this study. Our findings suggest that learning an advanced temporal bone procedure such as cochlear implantation surgery requires much more training than learning mastoidectomy.


Assuntos
Implante Coclear , Implantes Cocleares , Treinamento por Simulação , Realidade Virtual , Cadáver , Competência Clínica , Humanos , Estudos Prospectivos , Treinamento por Simulação/métodos
2.
Otolaryngol Head Neck Surg ; 165(5): 617-625, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33650897

RESUMO

OBJECTIVE: 3D-printed models hold great potential for temporal bone surgical training as a supplement to cadaveric dissection. Nevertheless, critical knowledge on manufacturing remains scattered, and little is known about whether use of these models improves surgical performance. This systematic review aims to explore (1) methods used for manufacturing and (2) how educational evidence supports using 3D-printed temporal bone models. DATA SOURCES: PubMed, Embase, the Cochrane Library, and Web of Science. REVIEW METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, relevant studies were identified and data on manufacturing and validation and/or training extracted by 2 reviewers. Quality assessment was performed using the Medical Education Research Study Quality Instrument tool; educational outcomes were determined according to Kirkpatrick's model. RESULTS: The search yielded 595 studies; 36 studies were found eligible and included for analysis. The described 3D-printed models were based on computed tomography scans from patients or cadavers. Processing included manual segmentation of key structures such as the facial nerve; postprocessing, for example, consisted of removal of print material inside the model. Overall, educational quality was low, and most studies evaluated their models using only expert and/or trainee opinion (ie, Kirkpatrick level 1). Most studies reported positive attitudes toward the models and their potential for training. CONCLUSION: Manufacturing and use of 3D-printed temporal bones for surgical training are widely reported in the literature. However, evidence to support their use and knowledge about both manufacturing and the effects on subsequent surgical performance are currently lacking. Therefore, stronger educational evidence and manufacturing knowhow are needed for widespread implementation of 3D-printed temporal bones in surgical curricula.


Assuntos
Otolaringologia/educação , Modelagem Computacional Específica para o Paciente , Impressão Tridimensional , Cadáver , Humanos , Osso Temporal/cirurgia
3.
OTO Open ; 5(4): 2473974X211065012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926973

RESUMO

OBJECTIVE: Mastoidectomy is a cornerstone in the surgical management of middle and inner ear diseases. Unfortunately, training is challenged by insufficient access to human cadavers. Three-dimensional (3D) printing of temporal bones could alleviate this problem, but evidence on their educational effectiveness is lacking. It is largely unknown whether training on 3D-printed temporal bones improves mastoidectomy performance, including on cadavers, and how this training compares with virtual reality (VR) simulation. To address this knowledge gap, this study investigated whether training on 3D-printed temporal bones improves cadaveric dissection performance, and it compared this training with the already-established VR simulation. STUDY DESIGN: Prospective cohort study of an educational intervention. SETTING: Tertiary university hospital, cadaver dissection laboratory, and simulation center in Copenhagen, Denmark. METHODS: Eighteen otorhinolaryngology residents (intervention) attending the national temporal bone dissection course received 3 hours of mastoidectomy training on 3D-printed temporal bones. Posttraining cadaver mastoidectomy performances were rated by 3 experts using a validated assessment tool and compared with those of 66 previous course participants (control) who had received time-equivalent VR training prior to dissection. RESULTS: The intervention cohort outperformed the controls during cadaver dissection by 29% (P < .001); their performances were largely similar across training modalities but remained at a modest level (~50% of the maximum score). CONCLUSION: Mastoidectomy skills improved from training on 3D-printed temporal bone and seemingly more so than on time-equivalent VR simulation. Importantly, these skills transferred to cadaveric dissection. Training on 3D-printed temporal bones can effectively supplement cadaver training when learning mastoidectomy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA